Show simple item record

The indescribability of the order of the indescribable cardinals

dc.contributor.authorHauser, Kaien_US
dc.date.accessioned2006-04-10T15:13:30Z
dc.date.available2006-04-10T15:13:30Z
dc.date.issued1992-05-06en_US
dc.identifier.citationHauser, Kai (1992/05/06)."The indescribability of the order of the indescribable cardinals." Annals of Pure and Applied Logic 57(1): 45-91. <http://hdl.handle.net/2027.42/30053>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TYB-45F5R5T-7/2/7c933c7186acd24cf5c9f27f67990dfcen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/30053
dc.description.abstractWe prove the following consistency results about indescribable cardinals which answer a question of A. Kanamori and M. Magidor (cf. [3]).Theorem 1.1 (m[ges]2, n[ges]2). CON(ZFC + [there exists][kappa], [kappa]' ([kappa] is [Pi]mn indescribable, [kappa]' is [sigma]mn indescribable, and [kappa] CON(ZFC + [sigma] mn&gt; [pi]mn + GCH).Theorem 5.1 (ZFC). Assuming the existence of [sigma]mn indescribable cardinals for all m {0,1} there is a poset P [set membership, variant] L[] such that GCH holds in (L[])P and Theorem 1.1 extends the work begun in [2], and its proof uses an iterated forcing construction together with master condition arguments. By combining these techniques with some observations about small forcing and indescribability, one obtains the Easton-style result 5.1.en_US
dc.format.extent3053200 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleThe indescribability of the order of the indescribable cardinalsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCalifornia Institute of Technology, Sloan Laboratory 253-37, Pasadena, CA 91125, USA; University of Michigan, Department of Mathematics, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/30053/1/0000421.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0168-0072(92)90061-4en_US
dc.identifier.sourceAnnals of Pure and Applied Logicen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.