Show simple item record

The dynamical transition to step-flow growth during molecular-beam epitaxy of GaAs(00l)

dc.contributor.authorJohnson, M. D.en_US
dc.contributor.authorSudijono, J. L.en_US
dc.contributor.authorHunt, A. W.en_US
dc.contributor.authorOrr, B. G.en_US
dc.date.accessioned2006-04-10T15:28:07Z
dc.date.available2006-04-10T15:28:07Z
dc.date.issued1993-12-20en_US
dc.identifier.citationJohnson, M. D., Sudijono, J., Hunt, A. W., Orr, B. G. (1993/12/20)."The dynamical transition to step-flow growth during molecular-beam epitaxy of GaAs(00l)." Surface Science 298(2-3): 392-398. <http://hdl.handle.net/2027.42/30389>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TVX-46PB7YY-8K/2/bd8aa0bed00530ef6c80454b30cd5345en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/30389
dc.description.abstractScanning tunneling microscopy studies have been performed on GaAs homoepitaxial films grown by molecular-beam epitaxy. Images show that in the earliest stages of deposition the morphology oscillates between one with two-dimensional islands and flat terraces. After the initial transient regime, the system evolves to a dynamical steady state. This state is characterized by a constant step density and as such the growth mode can be termed step flow. Comparison with RHEED shows that there is a direct correspondence between the surface step density and the RHEED specular intensity. Furthermore, thick films (up to 1450 monolayers) display a constant or slowly increasing surface roughness consistent with long adatom diffusion lengths and limited upward diffusion.en_US
dc.format.extent604643 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleThe dynamical transition to step-flow growth during molecular-beam epitaxy of GaAs(00l)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, M1 48109-1120, USAen_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, M1 48109-1120, USAen_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, M1 48109-1120, USAen_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, M1 48109-1120, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/30389/1/0000007.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0039-6028(93)90053-Men_US
dc.identifier.sourceSurface Scienceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.