Show simple item record

Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization

dc.contributor.authorChesley, John T.en_US
dc.contributor.authorHalliday, Alexander N.en_US
dc.contributor.authorSnee, L. W.en_US
dc.contributor.authorMezger, Klausen_US
dc.contributor.authorShepherd, T. J.en_US
dc.contributor.authorScrivener, R. C.en_US
dc.date.accessioned2006-04-10T15:50:06Z
dc.date.available2006-04-10T15:50:06Z
dc.date.issued1993-04en_US
dc.identifier.citationChesley, J. T., Halliday, A. N., Snee, L. W., Mezger, K., Shepherd, T. J., Scrivener, R. C. (1993/04)."Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization." Geochimica et Cosmochimica Acta 57(8): 1817-1835. <http://hdl.handle.net/2027.42/30898>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6V66-4887NF7-1G/2/4c5f114cbbb9372871980374696b5788en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/30898
dc.description.abstractThe metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: 1. (1) exoskarns2. (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias3. (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization4. (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar/39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar/39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210[deg]C myr-1 to ~60[deg]C myr-1 with a mean of 100[deg]C myr-1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 +/- 7, 266 +/- 3 and 267 +/- 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma.en_US
dc.format.extent2961693 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleThermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralizationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherUSGS, Denver, CO 80225, USAen_US
dc.contributor.affiliationotherMax-Plank-Institut für Chemie, Saarstrasse 23, D-6500, Mainz, Germanyen_US
dc.contributor.affiliationotherBritish Geological Survey, Keyworth, Nottingham NG12 5GG, UKen_US
dc.contributor.affiliationotherBritish Geological Survey, Exeter EX4 6BX, UKen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/30898/1/0000567.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0016-7037(93)90115-Den_US
dc.identifier.sourceGeochimica et Cosmochimica Actaen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.