Show simple item record

The surface evolution and kinetic roughening during homoepitaxy of GaAs (001)

dc.contributor.authorOrr, B. G.en_US
dc.contributor.authorJohnson, M. D.en_US
dc.contributor.authorOrme, C.en_US
dc.contributor.authorSudijono, J. L.en_US
dc.contributor.authorHunt, A. W.en_US
dc.date.accessioned2006-04-10T18:16:16Z
dc.date.available2006-04-10T18:16:16Z
dc.date.issued1994en_US
dc.identifier.citationOrr, B. G., Johnson, M. D., Orme, C., Sudijono, J., Hunt, A. W. (1994)."The surface evolution and kinetic roughening during homoepitaxy of GaAs (001)." Solid-State Electronics 37(4-6): 1057-1063. <http://hdl.handle.net/2027.42/31695>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TY5-46VMD5N-YM/2/d9bde4c4327841f3f59218db82ba328den_US
dc.identifier.urihttps://hdl.handle.net/2027.42/31695
dc.description.abstractScanning tunneling microscopy studies have been performed on GaAs homoepitaxial films grown by molecular-beam epitaxy. Images show that in the earliest stages of deposition the morphology oscillates between one with two-dimensional islands and flat terraces. After the initial transient regime, the system evolves to a dynamical steady state. This state is characterized by a constant step density and as such the grown mode can be termed step flow. Comparison with reflection high-energy electron-diffraction (RHEED) shows that there is a direct correspondence between the surface step density and the RHEED specular intensity. Thick films (up to 1450 monolayers) display a slowly-increasing surface roughness. Analysis of the scaling properties and comparison with theories of film growth will be made.en_US
dc.format.extent858500 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleThe surface evolution and kinetic roughening during homoepitaxy of GaAs (001)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, U.S.A.en_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, U.S.A.en_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, U.S.A.en_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, U.S.A.en_US
dc.contributor.affiliationumThe Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/31695/1/0000631.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0038-1101(94)90356-5en_US
dc.identifier.sourceSolid-State Electronicsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.