Show simple item record

Role of water in formic acid decomposition

dc.contributor.authorAkiya, Naokoen_US
dc.contributor.authorSavage, Phillip E.en_US
dc.date.accessioned2006-04-19T13:24:04Z
dc.date.available2006-04-19T13:24:04Z
dc.date.issued1998-02en_US
dc.identifier.citationAkiya, Naoko; Savage, Phillip E. (1998)."Role of water in formic acid decomposition." AIChE Journal 44(2): 405-415. <http://hdl.handle.net/2027.42/34231>en_US
dc.identifier.issn0001-1541en_US
dc.identifier.issn1547-5905en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/34231
dc.description.abstractFormic acid decomposes primarily to CO and H 2 O in the gas phase, but to CO 2 and H 2 in the aqueous phase. Ab-initio quantum chemical calculations were performed, using Hartree-Fock and density functional methods, to seek an explanation for this behavior. The effect of water on the two decomposition pathways and on the isomerization of formic acid was determined. The transition state structures were fully optimized and include up to two water molecules. In the absence of water, dehydration is more favorable than decarboxylation. The presence of water reduces the activation barriers for both decomposition pathways, but decarboxylation is consistently more favorable than dehydration. The water molecules actively participate in the bond-breaking and bond-forming processes in the transition state. The reduction in the activation barriers with the addition of water indicates that water acts as a homogeneous catalyst for both dehydration and decarboxylation, whereas isomerization of formic acid occurs independently of water. Water has a strong effect on the relative stability of the formic acid isomers, acid–water complexes, and transition states. The relative stability of the transition states plays an important role in determining the faster decomposition pathway.en_US
dc.format.extent958811 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChemistryen_US
dc.subject.otherChemical Engineeringen_US
dc.titleRole of water in formic acid decompositionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDept. of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDept. of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109 ; Dept. of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/34231/1/690440217_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/aic.690440217en_US
dc.identifier.sourceAIChE Journalen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.