Optimal operation of a tubular chemical reactor
dc.contributor.author | Newberger, Mark Richard | en_US |
dc.contributor.author | Kadlec, Robert H. | en_US |
dc.date.accessioned | 2006-04-28T15:43:47Z | |
dc.date.available | 2006-04-28T15:43:47Z | |
dc.date.issued | 1971-12 | en_US |
dc.identifier.citation | Newberger, Mark R.; Kadlec, Robert H. (1971)."Optimal operation of a tubular chemical reactor." AIChE Journal 17(6): 1381-1387. <http://hdl.handle.net/2027.42/37363> | en_US |
dc.identifier.issn | 0001-1541 | en_US |
dc.identifier.issn | 1547-5905 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/37363 | |
dc.description.abstract | A theoretical and experimental study was conducted on the optimal steady state operation of a jacketed, tubular, liquid-phase reactor in which consecutive second-order reactions occurred in turbulent flow. To verify the proposed mathematical model, diethyl adipate was saponified with sodium hydroxide in aqueous solution. The 150 ft. long reactor jacket was divided into 5, 30 ft. sections. Hot water flow rates in the jacket sections were chosen to maximize the concentration of monoethyl adipate ion at the reactor exit. The plug-flow model and a position-dependent heat transfer coefficient accurately described temperature and concentration profiles. The Pontryagin maximum principle was used to choose idealized reactor temperature and wall heat flux profiles which would maximize the exit concentration of monoester. The maximum principle was shown to be an effective tool for this type of reactor optimization. A technique is given for optimizing more complex reaction systems. | en_US |
dc.format.extent | 666973 bytes | |
dc.format.extent | 3118 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | American Institute of Chemical Engineers | en_US |
dc.publisher | Wiley Periodiocals, Inc. | en_US |
dc.subject.other | Chemistry | en_US |
dc.subject.other | Chemical Engineering | en_US |
dc.title | Optimal operation of a tubular chemical reactor | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Chemical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, Michigan 48104 | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, Michigan 48104 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/37363/1/690170619_ftp.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1002/aic.690170619 | en_US |
dc.identifier.source | AIChE Journal | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.