Show simple item record

Analysis of double-substrate limited growth

dc.contributor.authorBader, F. G.en_US
dc.date.accessioned2006-04-28T16:29:26Z
dc.date.available2006-04-28T16:29:26Z
dc.date.issued1978-02en_US
dc.identifier.citationBader, F. G. (1978)."Analysis of double-substrate limited growth." Biotechnology and Bioengineering 20(2): 183-202. <http://hdl.handle.net/2027.42/37886>en_US
dc.identifier.issn0006-3592en_US
dc.identifier.issn1097-0290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/37886
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=630068&dopt=citationen_US
dc.description.abstractMathematical models which relate the growth rate of a microorganism to a single limiting substrate concentration have long been established. In recent years, it has become apparent that, under certain conditions, the growth rate of an organism may be simultaneously limited by two or more substrates. Mathematical models of double-substrate limitation fall into two categories: interactive and no interactive models. A discussion of both types of models is presented in both conceptual and mathematical terms. An analogous case of an enzyme which requires two different substrates to produce a single product is presented. This enzyme analog indicates that both types of double-substrate limitation models appear to be feasible under certain conditions. Based upon stoichiometry and specific growth rate-substrate concentration contour plots, a method for determining the operational conditions which will lead to double-substrate limitation is presented.en_US
dc.format.extent723001 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChemistryen_US
dc.subject.otherBiochemistry and Biotechnologyen_US
dc.titleAnalysis of double-substrate limited growthen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid630068en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/37886/1/260200203_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/bit.260200203en_US
dc.identifier.sourceBiotechnology and Bioengineeringen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.