Show simple item record

Electrostatic model for infrared intensities in a spectroscopically determined molecular mechanics force field

dc.contributor.authorPalmo, Kimen_US
dc.contributor.authorKrimm, Samuelen_US
dc.date.accessioned2006-04-28T16:50:34Z
dc.date.available2006-04-28T16:50:34Z
dc.date.issued1998-05en_US
dc.identifier.citationPalmo, Kim; Krimm, Samuel (1998)."Electrostatic model for infrared intensities in a spectroscopically determined molecular mechanics force field." Journal of Computational Chemistry 19(7): 754-768. <http://hdl.handle.net/2027.42/38291>en_US
dc.identifier.issn0192-8651en_US
dc.identifier.issn1096-987Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/38291
dc.description.abstractA new electrostatic model for the calculation of infrared intensities in molecular mechanics and molecular dynamics is presented. The model is based on atomic charges, atomic charge fluxes, and internal coordinate dipoles and their fluxes. The internal coordinate dipoles are used instead of atomic dipoles, thus simplifying the derivation of parameters. The model is designed to reproduce ab initio dipole derivatives, and the parameters can be obtained by (iterative) transformations from these, or by linear least squares fitting to them. A first application to linear alkanes has been made. For these molecules, the intensities can be predicted with an average accuracy of 30–40%. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 754–768, 1998en_US
dc.format.extent248356 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherChemistryen_US
dc.subject.otherTheoretical, Physical and Computational Chemistryen_US
dc.titleElectrostatic model for infrared intensities in a spectroscopically determined molecular mechanics force fielden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiophysics Research Division and Department of Physics, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumBiophysics Research Division and Department of Physics, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109 ; Biophysics Research Division and Department of Physics, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/38291/1/6_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/(SICI)1096-987X(199805)19:7<754::AID-JCC6>3.0.CO;2-Pen_US
dc.identifier.sourceJournal of Computational Chemistryen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.