Show simple item record

Ethinyl estradiol decreases acidification of rat liver endocytic vesicles

dc.contributor.authorVan Dyke, Rebecca W.en_US
dc.contributor.authorRoot, Karen V.en_US
dc.date.accessioned2006-04-28T16:56:15Z
dc.date.available2006-04-28T16:56:15Z
dc.date.issued1993-09en_US
dc.identifier.citationVan Dyke, Rebecca W.; Root, Karen V. (1993)."Ethinyl estradiol decreases acidification of rat liver endocytic vesicles." Hepatology 18(3): 604-613. <http://hdl.handle.net/2027.42/38399>en_US
dc.identifier.issn0270-9139en_US
dc.identifier.issn1527-3350en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/38399
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8359802&dopt=citationen_US
dc.description.abstractTreatment with ethinyl estradiol is known to impair bile formation, bile acid transport and Na,K-ATPase activity, to alter receptor-mediated endocytosis and transcytosis of IgA and asialoorosomucoid and to affect membrane lipid composition and fluidity. Because appropriate sorting and trafficking of asialoorosomucoid requires adequate acidification of endocytic vesicles by a lipid-sensitive electrogenic proton pump, we examined the effects of 5 days of treatment with ethinyl estradiol (5 mg/kg body wt, subcutaneously) on acidification of early endosomes prepared from male rat livers. Littermate control animals received equal volumes of the solvent propylene glycol. Pretreatment with ethinyl estradiol reduced ATP-dependent initial rates of endosome acidification by 11% to 25% when measured in potassium medium containing 0 to 140 mmol/L chloride; these differences were significant at four of six chloride concentrations tested. The proton pumps of ethinyl estradiol and propylene glycol endosomes exhibited similar Michaelis-Menten constants for MgATP (Michaelis-Menten constant of 63 and 66 Μmol/L in the absence of chloride and 101 and 126 Μol/L in the presence of chloride, respectively). Acidification of ethinyl estradiol and propylene glycol endosomes changed in the same manner when various cations or anions were substituted for potassium gluconate, although the effects of ethinyl estradiol were less marked in the absence of K + . Kinetics of inhibition for ethinyl estradiol and propylene glycol endosomes were similar for the proton pump inhibitors N-ethylmaleimide (50% inhibitory concentrations of 13.5 and 18.1 Μmol/L), dicyclohexylcarbodiimide (50% inhibitory concentrations of 206 and 216 Μmol/L) and bafilomycin A (50% inhibitory concentrations of 11 and 6 nmol/L). Although initial rates of acidification were slower in ethinyl estradiol endosomes, ATP-dependent steady-state vesicle interior pH was the same as that of propylene glycol endosomes over a range of chloride concentrations; this appeared to be due mainly to a trend toward decreased proton leak rates in ethinyl estradiol endosomes. Overall, ethinyl estradiol treatment modestly decreased initial rates of acidification and vesicle proton leakage, perhaps because of changes in endosome lipid composition; differences in the number, density or activation state of proton pumps; or differences in endosome geometry. Because the decrease in acidification rates was small, the effects of estrogen on the efficiency of uncoupling of endocytosed ligands such as asialoorosomucoid from their receptors in early endosomes; thus the rates of sorting and distribution of ligands remain unclear. (HEPATOLOGY 1993;18:604–613.)en_US
dc.format.extent1146117 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherW.B. Saundersen_US
dc.publisherWiley Periodiocals, Inc.en_US
dc.subject.otherLife and Medical Sciencesen_US
dc.subject.otherHepatologyen_US
dc.titleEthinyl estradiol decreases acidification of rat liver endocytic vesiclesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Gastroenterology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109–0682 ; 6520 MSRB-1, University of Michigan Medical Center, Ann Arbor, MI 48109–0682en_US
dc.contributor.affiliationumDivision of Gastroenterology, Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109–0682en_US
dc.identifier.pmid8359802en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/38399/1/1840180320_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/hep.1840180320en_US
dc.identifier.sourceHepatologyen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.