Show simple item record

The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series

dc.contributor.authorBoyd, John P.en_US
dc.date.accessioned2006-09-08T19:30:38Z
dc.date.available2006-09-08T19:30:38Z
dc.date.issued1999-03en_US
dc.identifier.citationBoyd, John P.; (1999). "The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series." Acta Applicandae Mathematicae 56(1): 1-98. <http://hdl.handle.net/2027.42/41670>en_US
dc.identifier.issn0167-8019en_US
dc.identifier.issn1572-9036en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/41670
dc.description.abstractSingular perturbation methods, such as the method of multiple scales and the method of matched asymptotic expansions, give series in a small parameter ε which are asymptotic but (usually) divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and explain how this knowledge can be exploited to generate a 'hyperasymptotic' approximation. This adds a second asymptotic expansion, with different scaling assumptions about the size of various terms in the problem, to achieve a minimum error much smaller than the best possible with the original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal solitary waves are used as an illustration.en_US
dc.format.extent997510 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; Springer Science+Business Mediaen_US
dc.subject.otherMathematicsen_US
dc.subject.otherComputer Science, Generalen_US
dc.subject.otherMathematics, Generalen_US
dc.subject.otherMathematical and Computational Physicsen_US
dc.subject.otherStatistical Physicsen_US
dc.subject.otherMechanicsen_US
dc.subject.otherPerturbation Methodsen_US
dc.subject.otherAsymptoticen_US
dc.subject.otherHyperasymptoticen_US
dc.subject.otherExponential Smallnessen_US
dc.titleThe Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Seriesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, MI, 48109, U.S.A.en_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1006145903624en_US
dc.identifier.sourceActa Applicandae Mathematicaeen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.