Show simple item record

Numerical simulation of detonation reignition in H$_2$-O$_2$ mixtures in area expansions

dc.contributor.authorTonello, N. A.en_US
dc.contributor.authorJones, David A.en_US
dc.contributor.authorKemister, G.en_US
dc.contributor.authorOran, Elaine S.en_US
dc.contributor.authorSichel, Martinen_US
dc.date.accessioned2006-09-08T19:46:23Z
dc.date.available2006-09-08T19:46:23Z
dc.date.issued2000-03en_US
dc.identifier.citationJones, D.A.; Kemister, G.; Tonello, N.A.; Oran, E.S.; Sichel, M.; (2000). "Numerical simulation of detonation reignition in H$_2$-O$_2$ mixtures in area expansions." Shock Waves 10(1): 33-41. <http://hdl.handle.net/2027.42/41914>en_US
dc.identifier.issn0938-1287en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/41914
dc.description.abstractTime-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H -O mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H -O -Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.en_US
dc.format.extent338983 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlag; Springer-Verlag Berlin Heidelbergen_US
dc.subject.otherKey Words: Detonation Reignition, H $_2$-O $_2$ Detonations, Multidimensional Detonation Dynamics, Transmitted Detonationsen_US
dc.subject.otherLegacyen_US
dc.titleNumerical simulation of detonation reignition in H$_2$-O$_2$ mixtures in area expansionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, USA, US,en_US
dc.contributor.affiliationotherAeronautical and Maritime Research Laboratory, DSTO, PO Box 4331, Victoria 3001, Australia, AU,en_US
dc.contributor.affiliationotherAeronautical and Maritime Research Laboratory, DSTO, PO Box 4331, Victoria 3001, Australia, AU,en_US
dc.contributor.affiliationotherLaboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Code 6404, Washington, DC 20375, USA, US,en_US
dc.contributor.affiliationotherCRAFT, Tech., 174 North Main Street, Bldg. 3, PO Box 1150, Dublin, PA 18917, USA, US,en_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/41914/1/193-10-1-33_00100033.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/s001930050177en_US
dc.identifier.sourceShock Wavesen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.