Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions
dc.contributor.author | Taylor, B. Alan | en_US |
dc.contributor.author | Meise, Reinhold | en_US |
dc.contributor.author | Braun, Rüdiger W. | en_US |
dc.date.accessioned | 2006-09-08T19:48:23Z | |
dc.date.available | 2006-09-08T19:48:23Z | |
dc.date.issued | 1999-09 | en_US |
dc.identifier.citation | Braun, Rüdiger W.; Meise, Reinhold; Taylor, B.A.; (1999). "Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions." Mathematische Zeitschrift 232(1): 103-135. <http://hdl.handle.net/2027.42/41946> | en_US |
dc.identifier.issn | 0025-5874 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/41946 | |
dc.description.abstract | Algebraic varieties V are investigated on which the natural analogue of the classical Phragmén-Lindelöf principle for plurisubharmonic functions holds. For a homogeneous polynomial P in three variables it is shown that its graph has this property if and only if P has real coefficients, no elliptic factors, is locally hyperbolic in all real characteristics, and the localizations in these characteristics are square-free. The last condition is shown to be necessary in any dimension. | en_US |
dc.format.extent | 266039 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag; Springer-Verlag Berlin Heidelberg | en_US |
dc.subject.other | Mathematics Subject Classification (1991):Primary 32F05, 31C10 | en_US |
dc.subject.other | Legacy | en_US |
dc.title | Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (e-mail: taylor@umich.edu), US, | en_US |
dc.contributor.affiliationother | Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany (e-mail: braun@cs.uni-duesseldorf.de / meise@cs.uni-duesseldorf.de), DE, | en_US |
dc.contributor.affiliationother | Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany (e-mail: braun@cs.uni-duesseldorf.de / meise@cs.uni-duesseldorf.de), DE, | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/41946/1/209-232-1-103_92320103.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/PL00004756 | en_US |
dc.identifier.source | Mathematische Zeitschrift | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.