Show simple item record

Astronomical Engineering: A Strategy For Modifying Planetary Orbits

dc.contributor.authorKorycansky, D. G.en_US
dc.contributor.authorLaughlin, Gregoryen_US
dc.contributor.authorAdams, Fred C.en_US
dc.date.accessioned2006-09-08T19:50:04Z
dc.date.available2006-09-08T19:50:04Z
dc.date.issued2001-03en_US
dc.identifier.citationKorycansky, D.G.; Laughlin, Gregory; Adams, Fred C.; (2001). "Astronomical Engineering: A Strategy For Modifying Planetary Orbits." Astrophysics and Space Science 275(4): 349-366. <http://hdl.handle.net/2027.42/41972>en_US
dc.identifier.issn0004-640Xen_US
dc.identifier.issn1572-946Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/41972
dc.description.abstractThe Sun's gradual brightening will seriously compromise the Earth'sbiosphere within ∼ 10 9 years. If Earth's orbit migrates outward,however, the biosphere could remain intact over the entiremain-sequence lifetime of the Sun. In this paper, we explore thefeasibility of engineering such a migration over a long timeperiod. The basic mechanism uses gravitational assists to (in effect)transfer orbital energy from Jupiter to the Earth, and therebyenlarges the orbital radius of Earth. This transfer is accomplishedby a suitable intermediate body, either a Kuiper Belt object or a mainbelt asteroid. The object first encounters Earth during an inward passon its initial highly elliptical orbit of large (∼ 300 AU)semimajor axis. The encounter transfers energy from the object to theEarth in standard gravity-assist fashion by passing close to theleading limb of the planet. The resulting outbound trajectory of theobject must cross the orbit of Jupiter; with proper timing, theoutbound object encounters Jupiter and picks up the energy it lost toEarth. With small corrections to the trajectory, or additionalplanetary encounters (e.g., with Saturn), the object can repeat thisprocess over many encounters. To maintain its present flux of solarenergy, the Earth must experience roughly one encounter every 6000years (for an object mass of 10 22 g). We develop the details ofthis scheme and discuss its ramifications.en_US
dc.format.extent141661 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; Springer Science+Business Mediaen_US
dc.subject.otherPhysicsen_US
dc.subject.otherAstronomyen_US
dc.titleAstronomical Engineering: A Strategy For Modifying Planetary Orbitsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPhysics Department, University of Michigan, Ann Arbor, MI, 48109, USAen_US
dc.contributor.affiliationotherCODEP Dept Earth Sciences, University of California, Santa Cruz, CA, 95064, USAen_US
dc.contributor.affiliationotherNASA Ames Research Center, 245-3 Moffett Field, CA, 94035, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/41972/1/10509_2004_Article_282187.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1002790227314en_US
dc.identifier.sourceAstrophysics and Space Scienceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.