Sums and Differences of Two Cubic Polynomials
dc.contributor.author | Wooley, Trevor D. | en_US |
dc.date.accessioned | 2006-09-08T20:21:14Z | |
dc.date.available | 2006-09-08T20:21:14Z | |
dc.date.issued | 2000-02 | en_US |
dc.identifier.citation | Wooley, Trevor D.; (2000). "Sums and Differences of Two Cubic Polynomials." Monatshefte für Mathematik 129(2): 159-169. <http://hdl.handle.net/2027.42/42451> | en_US |
dc.identifier.issn | 0026-9255 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/42451 | |
dc.description.abstract | When f ( x ) is a cubic polynomial with integral coefficients, we show that almost all integers represented as the sum or difference of two values of f ( x ), with , are thus represented essentially uniquely. | en_US |
dc.format.extent | 108223 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag; Springer-Verlag Wien | en_US |
dc.subject.other | 1991 Mathematics Subject Classification: 11P05 | en_US |
dc.subject.other | Key Words: Cubic Polynomials, Sums of Cubes, Waring’S Problem | en_US |
dc.subject.other | Legacy | en_US |
dc.title | Sums and Differences of Two Cubic Polynomials | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, USA, US | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/42451/1/605-129-2-159_01290159.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/s006050050016 | en_US |
dc.identifier.source | Monatshefte für Mathematik | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.