Show simple item record

Canonical partition function for the hydrogen atom in curved space

dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2006-09-08T21:01:43Z
dc.date.available2006-09-08T21:01:43Z
dc.date.issued1996-10en_US
dc.identifier.citationBlinder, S. M.; (1996). "Canonical partition function for the hydrogen atom in curved space." Journal of Mathematical Chemistry 19(1): 43-46. <http://hdl.handle.net/2027.42/43064>en_US
dc.identifier.issn0259-9791en_US
dc.identifier.issn1572-8897en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/43064
dc.description.abstractThe electronic partition function for the hydrogen atom was recently derived by integration over the Coulomb propagator. A much simpler derivation is given here, based on Schrödinger's exact solution for a hydrogenic atom in a Riemannian space of positive curvature. The energy spectrum is entirely discrete, including states which correspond to the ionized atom. The curvature in Riemannian space is shown to be equivalent to a finite volume in Euclidean space.en_US
dc.format.extent186678 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; J.C. Baltzer AG, Science Publishers ; Springer Science+Business Mediaen_US
dc.subject.otherChemistryen_US
dc.subject.otherMath. Applications in Chemistryen_US
dc.subject.otherPhysical Chemistryen_US
dc.subject.otherTheoretical and Computational Chemistryen_US
dc.titleCanonical partition function for the hydrogen atom in curved spaceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, M148109-1055, Ann Arbor, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/43064/1/10910_2005_Article_BF01165129.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF01165129en_US
dc.identifier.sourceJournal of Mathematical Chemistryen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.