Show simple item record

Counting points on varieties over finite fields related to a conjecture of Kontsevich

dc.contributor.authorStembridge, John R.en_US
dc.date.accessioned2006-09-08T21:15:02Z
dc.date.available2006-09-08T21:15:02Z
dc.date.issued1998-12en_US
dc.identifier.citationStembridge, John R.; (1998). "Counting points on varieties over finite fields related to a conjecture of Kontsevich." Annals of Combinatorics 2(4): 365-385. <http://hdl.handle.net/2027.42/43265>en_US
dc.identifier.issn0218-0006en_US
dc.identifier.issn0219-3094en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/43265
dc.description.abstractWe describe a characteristic-free algorithm for “reducing” an algebraic variety defined by the vanishing of a set of integer polynomials. In very special cases, the algorithm can be used to decide whether the number of points on a variety, as the ground field varies over finite fields, is a polynomial function of the size of the field. The algorithm is then used to investigate a conjecture of Kontsevich regarding the number of points on a variety associated with the set of spanning trees of any graph. We also prove several theorems describing properties of a (hypothetical) minimal counterexample to the conjecture, and produce counterexamples to some related conjectures.en_US
dc.format.extent1429827 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlag; Springer-Verlag Singapore Pte. Ltd.en_US
dc.subject.otherMathematicsen_US
dc.subject.otherCombinatoricsen_US
dc.subject.other05A15en_US
dc.subject.other05-04en_US
dc.subject.other14Q15en_US
dc.subject.other68Q40en_US
dc.subject.otherSpanning Treesen_US
dc.subject.otherMatroidsen_US
dc.subject.otherComputational Algebraen_US
dc.titleCounting points on varieties over finite fields related to a conjecture of Kontsevichen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, 48109-1109, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/43265/1/26_2005_Article_BF01608531.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF01608531en_US
dc.identifier.sourceAnnals of Combinatoricsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.