Show simple item record

A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows

dc.contributor.authorGroth, C. P. T.en_US
dc.contributor.authorDeZeeuw, Darren L.en_US
dc.contributor.authorGombosi, Tamas I.en_US
dc.contributor.authorPowell, Kenneth G.en_US
dc.date.accessioned2006-09-11T13:50:36Z
dc.date.available2006-09-11T13:50:36Z
dc.date.issued1999-03en_US
dc.identifier.citationGroth, C. P. T.; De Zeeuw, D. L.; Gombosi, T. I.; Powell, K. G.; (1999). "A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows." Space Science Reviews 87 (1-2): 193-198. <http://hdl.handle.net/2027.42/43790>en_US
dc.identifier.issn1572-9672en_US
dc.identifier.issn0038-6308en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/43790
dc.description.abstractA parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations of ideal magnetohydrodynamics (MHD) in three space dimensions. This solution algorithm makes use of modern finite-volume numerical methodology to provide a combination of high solution accuracy and computational robustness. Efficient and scalable implementations of the method have been developed for massively parallel computer architectures and high performance achieved. Numerical results are discussed for a simplified model of the initiation and evolution of coronal mass ejections (CMEs) in the inner heliosphere. The results demonstrate the potential of this numerical tool for enhancing our understanding of coronal and solar wind plasma processes.en_US
dc.format.extent2029771 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; Springer Science+Business Mediaen_US
dc.subject.otherMagnetohydrodynamicsen_US
dc.subject.otherPhysicsen_US
dc.subject.otherAstronomy, Astrophysics and Cosmologyen_US
dc.subject.otherExtraterrestrial Physics, Space Sciencesen_US
dc.subject.otherParallel Computingen_US
dc.subject.otherAdaptive Mesh Refinementen_US
dc.subject.otherSolar Winden_US
dc.subject.otherCoronal Mass Ejectionen_US
dc.titleA Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flowsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbsecondlevelAerospace Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSpace Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, 48109-2143, USAen_US
dc.contributor.affiliationumSpace Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, 48109-2143, USAen_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48109-2118, USAen_US
dc.contributor.affiliationumSpace Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, 48109-2143, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/43790/1/11214_2004_Article_234016.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1005136115563en_US
dc.identifier.sourceSpace Science Reviewsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.