Show simple item record

A simple proof of a primal affine scaling method

dc.contributor.authorSaigal, Romeshen_US
dc.date.accessioned2006-09-11T14:31:16Z
dc.date.available2006-09-11T14:31:16Z
dc.date.issued1996-12en_US
dc.identifier.citationSaigal, Romesh; (1996). "A simple proof of a primal affine scaling method." Annals of Operations Research 62(1): 303-324. <http://hdl.handle.net/2027.42/44263>en_US
dc.identifier.issn0254-5330en_US
dc.identifier.issn1572-9338en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/44263
dc.description.abstractIn this paper, we present a simpler proof of the result of Tsuchiya and Muramatsu on the convergence of the primal affine scaling method. We show that the primal sequence generated by the method converges to the interior of the optimum face and the dual sequence to the analytic center of the optimal dual face, when the step size implemented in the procedure is bounded by 2/3. We also prove the optimality of the limit of the primal sequence for a slightly larger step size of 2 q /(3 q −1), where q is the number of zero variables in the limit. We show this by proving the dual feasibility of a cluster point of the dual sequence.en_US
dc.format.extent746471 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherBaltzer Science Publishers, Baarn/Kluwer Academic Publishers; J.C. Baltzer AG, Science Publishers ; Springer Science+Business Mediaen_US
dc.subject.otherEconomics / Management Scienceen_US
dc.subject.otherTheory of Computationen_US
dc.subject.otherCombinatoricsen_US
dc.subject.otherOperations Research/Decision Theoryen_US
dc.subject.otherLinear Programmingen_US
dc.subject.otherAffine Scaling Methodsen_US
dc.subject.otherInterior Point Methodsen_US
dc.titleA simple proof of a primal affine scaling methoden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelIndustrial and Operations Engineeringen_US
dc.subject.hlbsecondlevelEconomicsen_US
dc.subject.hlbtoplevelBusinessen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Industrial and Operations Engineering, The University of Michigan, 48109-2117, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/44263/1/10479_2005_Article_BF02206821.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF02206821en_US
dc.identifier.sourceAnnals of Operations Researchen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.