Show simple item record

Surface topography evolution and fatigue fracture of polysilicon

dc.contributor.authorAllameh, S. M.en_US
dc.contributor.authorShrotriya, P.en_US
dc.contributor.authorButterwick, A.en_US
dc.contributor.authorBrown, S.en_US
dc.contributor.authorYao, Nanen_US
dc.contributor.authorSoboyejo, W.en_US
dc.date.accessioned2006-09-11T15:15:15Z
dc.date.available2006-09-11T15:15:15Z
dc.date.issued2003-10en_US
dc.identifier.citationAllameh, S. M.; Shrotriya, P.; Butterwick, A.; Brown, S.; Yao, Nan; Soboyejo, W.; (2003). "Surface topography evolution and fatigue fracture of polysilicon." Journal of Materials Science 38(20): 4145-4155. <http://hdl.handle.net/2027.42/44773>en_US
dc.identifier.issn0022-2461en_US
dc.identifier.issn1573-4803en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/44773
dc.description.abstractThis paper presents the results of an experimental stydy of the micromechanisms of fatigue crack nucleation and fatigue fracture in polysilicon MEMS Structures. The initial stages of fatigue are shown to be associated with stress-assisted surface topography evolution and the thickening of SiO 2 layers that form on the unpassivated polysilicon surfaces and crack/notch faces. The differences in surface topography and oxide thickness are elucidated as functions of fatigue cycling before discussing the micromechanisms of crack growth and final fracture.en_US
dc.format.extent664738 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; Springer Science+Business Mediaen_US
dc.subject.otherMechanicsen_US
dc.subject.otherIndustrial Chemistry/Chemical Engineeringen_US
dc.subject.otherChemistryen_US
dc.subject.otherPolymer Sciencesen_US
dc.subject.otherCharacterization and Evaluation Materialsen_US
dc.titleSurface topography evolution and fatigue fracture of polysiliconen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Engineering Physics, University of Michigan, Ann Arbor, MI, 48105, USAen_US
dc.contributor.affiliationotherExponent Failure Analysis, Natick, MA, 01760, USAen_US
dc.contributor.affiliationotherDepartment of Mechanical and Aerospace Engineering, The Princeton Materials Institute, Princeton, NJ, 08544, USAen_US
dc.contributor.affiliationotherDepartment of Mechanical and Aerospace Engineering, The Princeton Materials Institute, Princeton, NJ, 08544, USAen_US
dc.contributor.affiliationotherDepartment of Mechanical and Aerospace Engineering, The Princeton Materials Institute, Princeton, NJ, 08544, USAen_US
dc.contributor.affiliationotherDepartment of Mechanical and Aerospace Engineering, The Princeton Materials Institute, Princeton, NJ, 08544, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/44773/1/10853_2004_Article_5252917.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1026377522033en_US
dc.identifier.sourceJournal of Materials Scienceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.