Optimal solution approximation for infinite positive-definite quadratic programming
dc.contributor.author | Benson, P. | en_US |
dc.contributor.author | Smith, Robert L. | en_US |
dc.contributor.author | Bean, J. C. | en_US |
dc.contributor.author | Schochetman, Irwin E. | en_US |
dc.date.accessioned | 2006-09-11T15:50:25Z | |
dc.date.available | 2006-09-11T15:50:25Z | |
dc.date.issued | 1995-05 | en_US |
dc.identifier.citation | Benson, P.; Smith, R. L.; Schochetman, I. E.; Bean, J. C.; (1995). "Optimal solution approximation for infinite positive-definite quadratic programming." Journal of Optimization Theory and Applications 85(2): 235-248. <http://hdl.handle.net/2027.42/45243> | en_US |
dc.identifier.issn | 1573-2878 | en_US |
dc.identifier.issn | 0022-3239 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/45243 | |
dc.description.abstract | We consider a general doubly-infinite, positive-definite, quadratic programming problem. We show that the sequence of unique optimal solutions to the natural finite-dimensional subproblems strongly converges to the unique optimal solution. This offers the opportunity to arbitrarily well approximate the infinite-dimensional optimal solution by numerically solving a sufficiently large finite-dimensional version of the problem. We then apply our results to a general time-varying, infinite-horizon, positive-definite, LQ control problem. | en_US |
dc.format.extent | 443492 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Kluwer Academic Publishers-Plenum Publishers; Plenum Publishing Corporation ; Springer Science+Business Media | en_US |
dc.subject.other | LQ Control Problems | en_US |
dc.subject.other | Operations Research/Decision Theory | en_US |
dc.subject.other | Positive-definite Costs | en_US |
dc.subject.other | Infinite Quadratic Programming | en_US |
dc.subject.other | Theory of Computation | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Mathematics | en_US |
dc.subject.other | Applications of Mathematics | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Calculus of Variations and Optimal Control | en_US |
dc.subject.other | Engineering, General | en_US |
dc.subject.other | Time-varying Systems | en_US |
dc.subject.other | Infinite-horizon Optimization | en_US |
dc.subject.other | Solution Approximations | en_US |
dc.title | Optimal solution approximation for infinite positive-definite quadratic programming | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan | en_US |
dc.contributor.affiliationum | Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan | en_US |
dc.contributor.affiliationother | Department of Mathematical Sciences, Oakland University, Rochester, Michigan | en_US |
dc.contributor.affiliationother | Rubicon, Ann Arbor, Michigan | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.identifier.pmid | 7587384 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/45243/1/10957_2005_Article_BF02192225.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/BF02192225 | en_US |
dc.identifier.source | Journal of Optimization Theory and Applications | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.