Show simple item record

Asymptotic zero distribution of hypergeometric polynomials

dc.contributor.authorDuren, Peter L.en_US
dc.contributor.authorDriver, Kathyen_US
dc.date.accessioned2006-09-11T16:03:26Z
dc.date.available2006-09-11T16:03:26Z
dc.date.issued1999-03en_US
dc.identifier.citationDriver, Kathy; Duren, Peter; (1999). "Asymptotic zero distribution of hypergeometric polynomials." Numerical Algorithms 21 (1-4): 147-156. <http://hdl.handle.net/2027.42/45435>en_US
dc.identifier.issn1017-1398en_US
dc.identifier.issn1572-9265en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/45435
dc.description.abstractWe show that the zeros of the hypergeometric polynomials , , cluster on the loop of the lemniscate {k mathord{left/{vphantom {k {left( {k + 1} right)}}} right.kern-nulldelimiterspace} {left( {k + 1} right)}}}}} right.kern-nulldelimiterspace} {left( {k + 1} right)^{k + 1} ,{text{Re}}left( z right) > {k mathord{left/{vphantom {k {left( {k + 1} right)}}} right.kern-nulldelimiterspace} {left( {k + 1} right)}}}}} right}$$]]> as infty$$]]> . We also state the equations of the curves on which the zeros of , lie asymptotically as infty$$]]> . Auxiliary results for the asymptotic zero distribution of other functions related to hypergeometric polynomials are proved, including Jacobi polynomials with varying parameters and associated Legendre functions. Graphical evidence is provided using Mathematica.en_US
dc.format.extent119435 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers; Springer Science+Business Mediaen_US
dc.subject.otherComputer Scienceen_US
dc.subject.otherNumeric Computingen_US
dc.subject.otherMathematics, Generalen_US
dc.subject.otherAlgebraen_US
dc.subject.otherHypergeometric Polynomialsen_US
dc.subject.otherAlgorithmsen_US
dc.subject.otherAsymptotic Zero Distributionen_US
dc.subject.otherTheory of Computationen_US
dc.titleAsymptotic zero distribution of hypergeometric polynomialsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USAen_US
dc.contributor.affiliationotherDepartment of Mathematics, University of the Witwatersrand, P.O. Wits, 2050, Johannesburg, South Africaen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/45435/1/11075_2004_Article_329322.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1019197027156en_US
dc.identifier.sourceNumerical Algorithmsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.