Show simple item record

Bayesian inference for finite mixtures of generalized linear models with random effects

dc.contributor.authorDeSarbo, Wayne S.en_US
dc.contributor.authorLenk, Peter J.en_US
dc.date.accessioned2006-09-11T16:26:00Z
dc.date.available2006-09-11T16:26:00Z
dc.date.issued2000-03en_US
dc.identifier.citationLenk, Peter J.; DeSarbo, Wayne S.; (2000). "Bayesian inference for finite mixtures of generalized linear models with random effects." Psychometrika 65(1): 93-119. <http://hdl.handle.net/2027.42/45757>en_US
dc.identifier.issn0033-3123en_US
dc.identifier.issn1860-0980en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/45757
dc.description.abstractWe present an hierarchical Bayes approach to modeling parameter heterogeneity in generalized linear models. The model assumes that there are relevant subpopulations and that within each subpopulation the individual-level regression coefficients have a multivariate normal distribution. However, class membership is not known a priori, so the heterogeneity in the regression coefficients becomes a finite mixture of normal distributions. This approach combines the flexibility of semiparametric, latent class models that assume common parameters for each sub-population and the parsimony of random effects models that assume normal distributions for the regression parameters. The number of subpopulations is selected to maximize the posterior probability of the model being true. Simulations are presented which document the performance of the methodology for synthetic data with known heterogeneity and number of sub-populations. An application is presented concerning preferences for various aspects of personal computers.en_US
dc.format.extent2050876 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlag; The Psychometric Societyen_US
dc.subject.otherPsychologyen_US
dc.subject.otherLatent Class Analysisen_US
dc.subject.otherConsumer Behavioren_US
dc.subject.otherGeneralized Linear Modelsen_US
dc.subject.otherStatistical Theory and Methodsen_US
dc.subject.otherStatistics for Social Science, Behavorial Science, Education, Public Policy, and Lawen_US
dc.subject.otherPsychometricsen_US
dc.subject.otherAssessment, Testing and Evaluationen_US
dc.subject.otherBayesian Inferenceen_US
dc.subject.otherFinite Mixturesen_US
dc.subject.otherHeterogeneityen_US
dc.subject.otherMarkov Chain Monte Carloen_US
dc.titleBayesian inference for finite mixtures of generalized linear models with random effectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Business School, 701 Tappan Street, 48109-1234, Ann Arbor, MIen_US
dc.contributor.affiliationotherPennsylvania State University, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/45757/1/11336_2005_Article_BF02294188.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF02294188en_US
dc.identifier.sourcePsychometrikaen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.