Show simple item record

On Schur's Q -functions and the Primitive Idempotents of a Commutative Hecke Algebra

dc.contributor.authorStembridge, John R.en_US
dc.date.accessioned2006-09-11T17:24:36Z
dc.date.available2006-09-11T17:24:36Z
dc.date.issued1992-05en_US
dc.identifier.citationStembridge, John R.; (1992). "On Schur's Q -functions and the Primitive Idempotents of a Commutative Hecke Algebra." Journal of Algebraic Combinatorics 1(1): 71-95. <http://hdl.handle.net/2027.42/46127>en_US
dc.identifier.issn0925-9899en_US
dc.identifier.issn1572-9192en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/46127
dc.description.abstractLet B n denote the centralizer of a fixed-point free involution in the symmetric group S 2 n . Each of the four one-dimensional representations of B n induces a multiplicity-free representation of S 2 n , and thus the corresponding Hecke algebra is commutative in each case. We prove that in two of the cases, the primitive idempotents can be obtained from the power-sum expansion of Schur's Q -functions, from which follows the surprising corollary that the character tables of these two Hecke algebras are, aside from scalar multiples, the same as the nontrivial part of the character table of the spin representations of S n .en_US
dc.format.extent1129872 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers-Plenum Publishers; Kluwer Academic Publishers ; Springer Science+Business Mediaen_US
dc.subject.otherMathematicsen_US
dc.subject.otherComputer Science, Generalen_US
dc.subject.otherGroup Theory and Generalizationsen_US
dc.subject.otherOrder, Lattices, Ordered Algebraic Structuresen_US
dc.subject.otherCombinatoricsen_US
dc.subject.otherConvex and Discrete Geometryen_US
dc.subject.otherGelfand Pairsen_US
dc.subject.otherHecke Algebrasen_US
dc.subject.otherSymmetric Functionsen_US
dc.subject.otherZonal Polynomialsen_US
dc.titleOn Schur's Q -functions and the Primitive Idempotents of a Commutative Hecke Algebraen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109–1003en_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/46127/1/10801_2004_Article_415559.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1022485331028en_US
dc.identifier.sourceJournal of Algebraic Combinatoricsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.