Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas
dc.contributor.author | Stenger, Frank | en_US |
dc.contributor.author | McNamee, J. | en_US |
dc.date.accessioned | 2006-09-11T17:37:49Z | |
dc.date.available | 2006-09-11T17:37:49Z | |
dc.date.issued | 1967-11 | en_US |
dc.identifier.citation | McNamee, J.; Stenger, F.; (1967). "Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas." Numerische Mathematik 10(4): 327-344. <http://hdl.handle.net/2027.42/46315> | en_US |
dc.identifier.issn | 0945-3245 | en_US |
dc.identifier.issn | 0029-599X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/46315 | |
dc.description.abstract | The paper develops a construction for finding fully symmetric integration formulas of arbitrary degree 2 k + 1 in n -space such that the number of evaluation points is O ((2 n ) k )/ k !), n → ∞. Formulas of degrees 3, 5, 7, 9, are relatively simple and are presented in detail. The method has been tested by obtaining some special formulas of degrees 7, 9 and 11 but these are not presented here. | en_US |
dc.format.extent | 1125032 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.subject.other | Numerical and Computational Methods | en_US |
dc.subject.other | Mathematical and Computational Physics | en_US |
dc.subject.other | Numerical Analysis | en_US |
dc.subject.other | Mathematics, General | en_US |
dc.subject.other | Mathematics | en_US |
dc.subject.other | Mathematical Methods in Physics | en_US |
dc.subject.other | Appl.Mathematics/Computational Methods of Engineering | en_US |
dc.title | Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Dept. of Mathematics, University of Michigan, 48104, Michigan, Ann Arbor, USA | en_US |
dc.contributor.affiliationother | Canadian Mathematical Congress, 985 Sherbrooke St., West Montreal, Canada | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/46315/1/211_2005_Article_BF02162032.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/BF02162032 | en_US |
dc.identifier.source | Numerische Mathematik | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.