Show simple item record

Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt

dc.contributor.authorLange, Rebecca A.en_US
dc.contributor.authorNavrotsky, Alexandraen_US
dc.contributor.authorCashman, Katharine V.en_US
dc.date.accessioned2006-09-11T18:49:48Z
dc.date.available2006-09-11T18:49:48Z
dc.date.issued1994-06en_US
dc.identifier.citationLange, Rebecca A.; Cashman, Katharine V.; Navrotsky, Alexandra; (1994). "Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt." Contributions to Mineralogy and Petrology 118(2): 169-181. <http://hdl.handle.net/2027.42/47310>en_US
dc.identifier.issn0010-7999en_US
dc.identifier.issn1432-0967en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/47310
dc.description.abstractStep-scanning calorimetric measurements using a Setaram HT1500 calorimeter were performed between 800 and 1400°C on two natural samples: a ugandite from the East African rift and an olivine basalt from the western Mexican arc. Our measurements provide the first in-situ quantitative assessment of enthalpy during melting of initially crystalline natural samples. The distribution of latent heat across the liquidus-solidus intervals of the two samples is distinctly different, reflecting significant variation in the sequence and abundance of mineral phases during melting (clinopyroxene and leucite in the ugandite; olivine, clinopyroxene, and plagioclase in the basalt). Our data further indicate that the common assumption of a uniform distribution of latent heat across the liquidus-solidus interval of a magma is a reasonable approximation for the olivine basalt, but is grossly in error for the ugandite. This is due to cotectic precipitation of leucite and clinopyroxene, leading to a large, disproportionate release of latent heat early in the crystallization sequence. The implication for the thermal history of a crystallizing ugandite magma is that the rate of heat loss during conductive cooling will unitially be more rapid than the average rate. The net result will be to produce lower magmatic temperatures after a given cooling interval relative to models assuming a uniform release of latent heat. An additional series of scanning calorimetric experiments were performed at variable rates (1,2 and 3°/min) to evaluate the role of kinetics on the distribution of enthalpy during both melting and crystallization of the ugandite and olivine basalt. The results indicate that clinopyroxene is the most important mineral phase in controlling the shapes of the enthalpy profiles during cooling; this is due to its large enthalpy of fusion and its tendency for sluggish nucleation, followed by rapid crystallization at temperatures that vary with cooling rate. The resolution of the calorimeter (in terms of heat detected per unit time) is also important in determining the shapes of the observed enthalpy profiles during these rapid scans. Estimates based on the observed calorimetric signal associated with melting of olivine, and the lack of a calorimetric signal during melting of leucite, combined with known enthalpies of fusion for the two phases, indicate detection limits of approximately 0.6–1.2 kJ per 5 min increments.en_US
dc.format.extent3322784 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.subject.otherMineralogyen_US
dc.subject.otherMineral Resourcesen_US
dc.subject.otherGeologyen_US
dc.subject.otherGeosciencesen_US
dc.titleDirect measurements of latent heat during crystallization and melting of a ugandite and an olivine basalten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, 48109, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Geological and Geophysical Sciences, Princeton University, 08544, Princeton, NJ, USAen_US
dc.contributor.affiliationotherDepartment of Geological Sciences, University of Oregon, 97403, Eugene, OR, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/47310/1/410_2004_Article_BF01052867.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF01052867en_US
dc.identifier.sourceContributions to Mineralogy and Petrologyen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.