Show simple item record

A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis

dc.contributor.authorLee, C. -G.en_US
dc.contributor.authorKim, C. H.en_US
dc.contributor.authorRhee, S. K.en_US
dc.date.accessioned2006-09-11T19:25:12Z
dc.date.available2006-09-11T19:25:12Z
dc.date.issued1992-07en_US
dc.identifier.citationLee, C. -G.; Kim, C. H.; Rhee, S. K.; (1992). "A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis." Bioprocess Engineering 7(8): 335-341. <http://hdl.handle.net/2027.42/47811>en_US
dc.identifier.issn0178-515Xen_US
dc.identifier.issn1615-7605en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/47811
dc.description.abstractA mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with α -amylase, a series of Michaelis-Menten equations were obtained. After determining kinetic parameters from the results of simple experiments carried out at various substrate and enzyme concentrations and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results.en_US
dc.format.extent631347 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.subject.otherFood Scienceen_US
dc.subject.otherBiotechnologyen_US
dc.subject.otherWaste Management/Waste Technologyen_US
dc.subject.otherWaste Water Technology / Water Pollution Control / Water Management / Aquatic Pollutionen_US
dc.subject.otherIndustrial Chemistry/Chemical Engineeringen_US
dc.subject.otherChemistryen_US
dc.titleA kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, 48109-2136, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherLaboratory of Metabolic Engineering, Genetic Engineering Research Institute Korea Institute of Science and Technology, P.O. Box 17, 305-606, Taedok Science Town, Taejon, Koreaen_US
dc.contributor.affiliationotherLaboratory of Metabolic Engineering, Genetic Engineering Research Institute Korea Institute of Science and Technology, P.O. Box 17, 305-606, Taedok Science Town, Taejon, Koreaen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/47811/1/449_2004_Article_BF00369488.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF00369488en_US
dc.identifier.sourceBioprocess Engineeringen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.