Computational complexity of LCPs associated with positive definite symmetric matrices

Show simple item record Fathi, Yahya en_US 2006-09-11T19:32:09Z 2006-09-11T19:32:09Z 1979-12 en_US
dc.identifier.citation Fathi, Yahya; (1979). "Computational complexity of LCPs associated with positive definite symmetric matrices." Mathematical Programming 17(1): 335-344. <> en_US
dc.identifier.issn 1436-4646 en_US
dc.identifier.issn 0025-5610 en_US
dc.description.abstract Murty in a recent paper has shown that the computational effort required to solve a linear complementarity problem (LCP), by either of the two well known complementary pivot methods is not bounded above by a polynomial in the size of the problem. In that paper, by constructing a class of LCPs—one of order n for n ≥ 2—he has shown that to solve the problem of order n , either of the two methods goes through 2 n pivot steps before termination. en_US
dc.format.extent 502954 bytes
dc.format.extent 3115 bytes
dc.format.mimetype application/pdf
dc.format.mimetype text/plain
dc.language.iso en_US
dc.publisher Springer-Verlag; The Mathematical Programming Society en_US
dc.subject.other Mathematics en_US
dc.subject.other Combinatorics en_US
dc.subject.other Numerical Analysis en_US
dc.subject.other Mathematics of Computing en_US
dc.subject.other Calculus of Variations and Optimal Control en_US
dc.subject.other Optimization en_US
dc.subject.other Mathematical and Computational Physics en_US
dc.subject.other Complementary Pivot Methods en_US
dc.subject.other Computational Complexity en_US
dc.subject.other Complementary Cones en_US
dc.subject.other Linear Complementarity Problem en_US
dc.subject.other Operation Research/Decision Theory en_US
dc.subject.other Exponential Growth en_US
dc.subject.other Mathematical Methods in Physics en_US
dc.subject.other Numerical and Computational Methods en_US
dc.title Computational complexity of LCPs associated with positive definite symmetric matrices en_US
dc.type Article en_US
dc.subject.hlbsecondlevel Mathematics en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum The University of Michigan, Ann Arbor, MI, USA en_US
dc.contributor.affiliationumcampus Ann Arbor en_US
dc.description.bitstreamurl en_US
dc.identifier.doi en_US
dc.identifier.source Mathematical Programming en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Coming Soon

MLibrary logo