A critical index algorithm for nearest point problems on simplicial cones
dc.contributor.author | Fathi, Yahya | en_US |
dc.contributor.author | Murty, Katta G. | en_US |
dc.date.accessioned | 2006-09-11T19:32:29Z | |
dc.date.available | 2006-09-11T19:32:29Z | |
dc.date.issued | 1982-12 | en_US |
dc.identifier.citation | Murty, Katta G.; Fathi, Yahya; (1982). "A critical index algorithm for nearest point problems on simplicial cones." Mathematical Programming 23(1): 206-215. <http://hdl.handle.net/2027.42/47910> | en_US |
dc.identifier.issn | 0025-5610 | en_US |
dc.identifier.issn | 1436-4646 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/47910 | |
dc.description.abstract | We consider the linear complementarity problem ( q, M ) in which M is a positive definite symmetric matrix of order n. This problem is equivalent to a nearest point problem [ Γ; b ] in which Γ = { A . 1 , ⋯, A. n } is a basis for R n , b is a given point in R n ; and it is required to find the nearest point in the simplicial cone Pos( Γ ) to b. We develop an algorithm for solving the linear complementarity problem ( q, M ) or the equivalent nearest point problem [ Γ; b ]. Computational experience in comparison with an existing algorithm is presented. | en_US |
dc.format.extent | 452206 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag; The Mathematical Programming Society, Inc. | en_US |
dc.subject.other | Mathematical and Computational Physics | en_US |
dc.subject.other | Critical Index | en_US |
dc.subject.other | Dimension Reduction | en_US |
dc.subject.other | Numerical and Computational Methods | en_US |
dc.subject.other | Linear Complementarity Problem | en_US |
dc.subject.other | Operation Research/Decision Theory | en_US |
dc.subject.other | Mathematical Methods in Physics | en_US |
dc.subject.other | Nearest Point | en_US |
dc.subject.other | Simplicial Cone | en_US |
dc.subject.other | Orthogonal Projection | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Combinatorics | en_US |
dc.subject.other | Calculus of Variations and Optimal Control | en_US |
dc.subject.other | Mathematics | en_US |
dc.subject.other | Mathematics of Computing | en_US |
dc.subject.other | Numerical Analysis | en_US |
dc.title | A critical index algorithm for nearest point problems on simplicial cones | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Industrial and Operations Engineering, University of Michigan, 48019, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationother | School of Industrial and Systems Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/47910/1/10107_2005_Article_BF01583789.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/BF01583789 | en_US |
dc.identifier.source | Mathematical Programming | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.