Pure adaptive search in global optimization
dc.contributor.author | Smith, Robert L. | en_US |
dc.contributor.author | Zabinsky, Zelda Barbara | en_US |
dc.date.accessioned | 2006-09-11T19:33:23Z | |
dc.date.available | 2006-09-11T19:33:23Z | |
dc.date.issued | 1992-01 | en_US |
dc.identifier.citation | Zabinsky, Zelda B.; Smith, Robert L.; (1992). "Pure adaptive search in global optimization." Mathematical Programming 53 (1-3): 323-338. <http://hdl.handle.net/2027.42/47923> | en_US |
dc.identifier.issn | 1436-4646 | en_US |
dc.identifier.issn | 0025-5610 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/47923 | |
dc.description.abstract | Pure adaptive seach iteratively constructs a sequence of interior points uniformly distributed within the corresponding sequence of nested improving regions of the feasible space. That is, at any iteration, the next point in the sequence is uniformly distributed over the region of feasible space containing all points that are strictly superior in value to the previous points in the sequence. The complexity of this algorithm is measured by the expected number of iterations required to achieve a given accuracy of solution. We show that for global mathematical programs satisfying the Lipschitz condition, its complexity increases at most linearly in the dimension of the problem. | en_US |
dc.format.extent | 790315 bytes | |
dc.format.extent | 3115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag; The Mathematical Programming Society, Inc. | en_US |
dc.subject.other | Global Optimization | en_US |
dc.subject.other | Complexity | en_US |
dc.subject.other | Optimization | en_US |
dc.subject.other | Calculus of Variations and Optimal Control | en_US |
dc.subject.other | Combinatorics | en_US |
dc.subject.other | Mathematics of Computing | en_US |
dc.subject.other | Mathematics | en_US |
dc.subject.other | Numerical Analysis | en_US |
dc.subject.other | Monte Carlo Optimization | en_US |
dc.subject.other | Mathematical and Computational Physics | en_US |
dc.subject.other | Mathematical Methods in Physics | en_US |
dc.subject.other | Numerical and Computational Methods | en_US |
dc.subject.other | Operation Research/Decision Theory | en_US |
dc.subject.other | Random Search | en_US |
dc.title | Pure adaptive search in global optimization | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Industrial & Operations Engineering, The University of Michigan, 48109, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationother | Industrial Engineering Program, FU-20, University of Washington, 98195, Seattle, WA, USA | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/47923/1/10107_2005_Article_BF01585710.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/BF01585710 | en_US |
dc.identifier.source | Mathematical Programming | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.