Show simple item record

Smooth quasiregular mappings with branching

dc.contributor.authorBonk, Marioen_US
dc.contributor.authorHeinonen, Juhaen_US
dc.date.accessioned2006-09-11T19:34:49Z
dc.date.available2006-09-11T19:34:49Z
dc.date.issued2004-11en_US
dc.identifier.citationBonk, Mario; Heinonen, Juha; (2004). "Smooth quasiregular mappings with branching." Publications Mathématiques de l’Institut des Hautes Études Scientifiques 100(1): 153-170. <http://hdl.handle.net/2027.42/47944>en_US
dc.identifier.issn1618-1913en_US
dc.identifier.issn0073-8301en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/47944
dc.description.abstractWe give an example of a -smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping in n -space has Hausdorff dimension quantitatively bounded away from n . By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.en_US
dc.format.extent330354 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherSpringer-Verlag; Institut des Hautes Études Scientifiques and Springer-Verlagen_US
dc.subject.otherMathematicsen_US
dc.titleSmooth quasiregular mappings with branchingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, MI, 48109, USAen_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, MI, 48109, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/47944/1/10240_2004_Article_24.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/s10240-004-0024-8en_US
dc.identifier.sourcePublications Mathématiques de l’Institut des Hautes Études Scientifiquesen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.