Show simple item record

The efficient determination of the percolation threshold by a frontier-generating walk in a gradient

dc.contributor.authorZiff, Robert M.en_US
dc.contributor.authorSapoval, B.en_US
dc.date.accessioned2006-12-19T18:50:09Z
dc.date.available2006-12-19T18:50:09Z
dc.date.issued1986-12-21en_US
dc.identifier.citationZiff, R M; Sapoval, B (1986). "The efficient determination of the percolation threshold by a frontier-generating walk in a gradient." Journal of Physics A: Mathematical and General. 19(18): L1169-L1172. <http://hdl.handle.net/2027.42/48807>en_US
dc.identifier.issn0305-4470en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/48807
dc.description.abstractThe frontier in gradient percolation is generated directly by a type of self-avoiding random walk. The existence of the gradient permits one to generate an infinite walk on a computer of finite memory. From this walk, the percolation threshold pc for a two-dimensional lattice can be determined with apparently maximum efficiency for a naive Monte Carlo calculation (+or-N-12/). For a square lattice, the value pc=0.592745+or-0.000002 is found for a simulation of N=2.6*1011 total steps (occupied and blocked perimeter sites). The power of the method is verified on the Kagome site percolation case.en_US
dc.format.extent3118 bytes
dc.format.extent262416 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleThe efficient determination of the percolation threshold by a frontier-generating walk in a gradienten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDept. of Chem. Eng., Michigan Univ., Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDept. of Chem. Eng., Michigan Univ., Ann Arbor, MI, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/48807/2/jav19i18pL1169.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0305-4470/19/18/010en_US
dc.identifier.sourceJournal of Physics A: Mathematical and General.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record