An explicit solution to a discrete fragmentation model
dc.contributor.author | Ziff, Robert M. | en_US |
dc.date.accessioned | 2006-12-19T18:51:50Z | |
dc.date.available | 2006-12-19T18:51:50Z | |
dc.date.issued | 1992-05-07 | en_US |
dc.identifier.citation | Ziff, R M (1992). "An explicit solution to a discrete fragmentation model." Journal of Physics A: Mathematical and General. 25(9): 2569-2576. <http://hdl.handle.net/2027.42/48827> | en_US |
dc.identifier.issn | 0305-4470 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/48827 | |
dc.description.abstract | The discrete binary fragmentation equation is solved explicitly for a model where the net rate of breakup of a particle of size k, ak, equals (k-1)/(k+1), and the daughter-size distribution bik/ equals 2/(k-1). This system is closely related to a model of polymer degradation considered by Simha (1941), in which ak=1 and bik/ is as above. In the continuum limit, both of these models go over to a continuous fragmentation model in which all particles break with an equal rate, a(x)=1, and the daughter-size distribution is uniform, b(y mod x)=2/x, which is at the borderline of the shattering transition. | en_US |
dc.format.extent | 3118 bytes | |
dc.format.extent | 272816 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.publisher | IOP Publishing Ltd | en_US |
dc.title | An explicit solution to a discrete fragmentation model | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationother | Dept. of Chem. Eng., Michigan Univ., Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationumcampus | Ann Arbor | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/48827/2/ja920927.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1088/0305-4470/25/9/027 | en_US |
dc.identifier.source | Journal of Physics A: Mathematical and General. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.