Show simple item record

An explicit solution to a discrete fragmentation model

dc.contributor.authorZiff, Robert M.en_US
dc.date.accessioned2006-12-19T18:51:50Z
dc.date.available2006-12-19T18:51:50Z
dc.date.issued1992-05-07en_US
dc.identifier.citationZiff, R M (1992). "An explicit solution to a discrete fragmentation model." Journal of Physics A: Mathematical and General. 25(9): 2569-2576. <http://hdl.handle.net/2027.42/48827>en_US
dc.identifier.issn0305-4470en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/48827
dc.description.abstractThe discrete binary fragmentation equation is solved explicitly for a model where the net rate of breakup of a particle of size k, ak, equals (k-1)/(k+1), and the daughter-size distribution bik/ equals 2/(k-1). This system is closely related to a model of polymer degradation considered by Simha (1941), in which ak=1 and bik/ is as above. In the continuum limit, both of these models go over to a continuous fragmentation model in which all particles break with an equal rate, a(x)=1, and the daughter-size distribution is uniform, b(y mod x)=2/x, which is at the borderline of the shattering transition.en_US
dc.format.extent3118 bytes
dc.format.extent272816 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleAn explicit solution to a discrete fragmentation modelen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDept. of Chem. Eng., Michigan Univ., Ann Arbor, MI, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/48827/2/ja920927.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0305-4470/25/9/027en_US
dc.identifier.sourceJournal of Physics A: Mathematical and General.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.