Show simple item record

dc.contributor.authorKim, Suhongen_US
dc.contributor.authorKlimecky, Peteen_US
dc.contributor.authorJeffries, Jay B.en_US
dc.contributor.authorTerry, Fred L. Jren_US
dc.contributor.authorHanson, Ronald K.en_US
dc.date.accessioned2006-12-19T19:11:29Z
dc.date.available2006-12-19T19:11:29Z
dc.date.issued2003-09-01en_US
dc.identifier.citationKim, Suhong; Klimecky, Pete; Jeffries, Jay B; Terry, Fred L Jr; Hanson, Ronald K (2003). "In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor." Measurement Science and Technology. 14(9): 1662-1670. <http://hdl.handle.net/2027.42/49064>en_US
dc.identifier.issn0957-0233en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/49064
dc.description.abstractTunable diode laser absorption spectroscopy is used to monitor hydrogen chloride (HCl) concentration in a commercial, high-density, low-pressure plasma reactor during plasma etching. A near-infrared diode laser is used to scan the P(4) transition in the first overtone of HCl near 1.79 µm to measure changes in HCl levels. A variety of HBr and Cl2 feedstock recipes are investigated at a process pressure of 10 mTorr as a function of rf power transformer coupled plasma, bias power and the total flow rate. Using 50 ms averaging and a signal modulation technique, we estimate a minimum detectivity of 4 × 10−6 in peak absorbance, which corresponds to an HCl number density of ∼2 × 1011 cm−3. The diode-laser based HCl sensor is sufficiently sensitive to detect small concentration variations and HCl concentration correlates with poly-Si etch rate for the conditions studied. These measurements demonstrate the feasibility of a real-time diode laser-based sensor for etch rate monitoring and the potential for process control.en_US
dc.format.extent3118 bytes
dc.format.extent371181 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleIn situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Center for Integrated Micro Systems, EECS Department, 2408 EECS Building, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USAen_US
dc.contributor.affiliationumUniversity of Michigan, Center for Integrated Micro Systems, EECS Department, 2408 EECS Building, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USAen_US
dc.contributor.affiliationotherStanford University, High Temperature Gasdynamics Laboratory, Mechanical Engineering Department, Building 520, Stanford, CA 94305-3032, USAen_US
dc.contributor.affiliationotherStanford University, High Temperature Gasdynamics Laboratory, Mechanical Engineering Department, Building 520, Stanford, CA 94305-3032, USAen_US
dc.contributor.affiliationotherStanford University, High Temperature Gasdynamics Laboratory, Mechanical Engineering Department, Building 520, Stanford, CA 94305-3032, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/49064/2/e30918.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0957-0233/14/9/318en_US
dc.identifier.sourceMeasurement Science and Technology.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record