Show simple item record

Simulation of dynamic fracture of an impact-loaded brittle solid

dc.contributor.authorSmith, R. W.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.date.accessioned2006-12-19T19:12:41Z
dc.date.available2006-12-19T19:12:41Z
dc.date.issued1994-11-01en_US
dc.identifier.citationSmith, R W; Srolovitz, D J (1994). "Simulation of dynamic fracture of an impact-loaded brittle solid." Modelling and Simulation in Materials Science and Engineering. 2(6): 1153-1170. <http://hdl.handle.net/2027.42/49079>en_US
dc.identifier.issn0965-0393en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/49079
dc.description.abstractA new model for simulating dynamic fracture in impact-loaded solids is presented. This model is based upon the traditional molecular dynamics procedure, but accounts for the irreversible nature of the fracture process by deleting the attractive part of the particle interaction potential when the bond between two particles is stretched beyond a critical length. This critical length is determined by comparison with Griffith theory. In the present paper, the model is applied to a two-dimensional homogeneous solid in the absence of microstructure (microstructural effects are treated in a subsequent publication). When the impact zone is much smaller man the size of the sample, or the impact zone is wide and the impact amplitude is large, the first crack forms a finite distance ahead of the impact zone. Static continuum elasticity theory shows that the position of this first crack occurs at the position of the maximum tensile stress. This crack then propagates back to the edges of the impact zone and forward into the sample, thereby creating an X-shaped crack pattern. The tips of the X-shaped crack propagate more slowly than the stress wave and hence strong deviations from this pattern are observed when the stress wave passes the crack tips. When the predominantly compressive stress wave reflects off the back free surface, a tensile wave propagates back into the sample creating even more damage. This damage occurs in bands parallel to and set back from the back surface.en_US
dc.format.extent3118 bytes
dc.format.extent1096177 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleSimulation of dynamic fracture of an impact-loaded brittle soliden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDept. of Mater. Sci. & Eng., Michigan Univ., Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDept. of Mater. Sci. & Eng., Michigan Univ., Ann Arbor, MI, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/49079/2/ms940607.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0965-0393/2/6/007en_US
dc.identifier.sourceModelling and Simulation in Materials Science and Engineering.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.