Show simple item record

Discrete Gel'fand-Levitan and Marchenko matrix equations and layer stripping algorithms for the discrete two-dimensional Schrödinger equation inverse scattering problem with a nonlocal potential

dc.contributor.authorYagle, Andrew E.en_US
dc.date.accessioned2006-12-19T19:14:46Z
dc.date.available2006-12-19T19:14:46Z
dc.date.issued1998-06-01en_US
dc.identifier.citationYagle, Andrew E (1998). "Discrete Gel'fand-Levitan and Marchenko matrix equations and layer stripping algorithms for the discrete two-dimensional Schrödinger equation inverse scattering problem with a nonlocal potential ." Inverse Problems. 14(3): 763-778. <http://hdl.handle.net/2027.42/49103>en_US
dc.identifier.issn0266-5611en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/49103
dc.description.abstractWe develop discrete counterparts to the Gel'fand-Levitan and Marchenko integral equations for the two-dimensional (2D) discrete inverse scattering problem in polar coordinates with a nonlocal potential. We also develop fast layer stripping algorithms that solve these systems of equations exactly. The significance of these results is: (1) they are the first numerical implementation of Newton's multidimensional inverse scattering theory; (2) they show that the result will almost always be a nonlocal potential, unless the data are `miraculous'; (3) they show that layer stripping algorithms implement fast `split' signal processing fast algorithms; (4) they link 2D discrete inverse scattering with 2D discrete random field linear least-squares estimation; and (5) they formulate and solve 2D discrete Schrödinger equation inverse scattering problems in polar coordinates.en_US
dc.format.extent3118 bytes
dc.format.extent168389 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleDiscrete Gel'fand-Levitan and Marchenko matrix equations and layer stripping algorithms for the discrete two-dimensional Schrödinger equation inverse scattering problem with a nonlocal potentialen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/49103/2/ip8322.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0266-5611/14/3/023en_US
dc.identifier.sourceInverse Problems.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.