Show simple item record

dc.contributor.authorGlass, E. N.en_US
dc.contributor.authorNaber, M. G.en_US
dc.date.accessioned2006-12-19T19:22:33Z
dc.date.available2006-12-19T19:22:33Z
dc.date.issued1997-07-01en_US
dc.identifier.citationGlass, E N; Naber, M G (1997). "Taub numbers at future null infinity: III. The Bondi mass ." Classical and Quantum Gravity. 14(7): 1899-1909. <http://hdl.handle.net/2027.42/49198>en_US
dc.identifier.issn0264-9381en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/49198
dc.description.abstractThis work extends the ideas developed in two previous papers by the authors. First- and second-order perturbation solutions of Einstein's equations (in Newman - Penrose form) for the Bondi - Sachs metric are found on a background Minkowski manifold. These solutions allow a tensorial calculation of the Bondi mass using the Taub superpotential.en_US
dc.format.extent3118 bytes
dc.format.extent147507 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherIOP Publishing Ltden_US
dc.titleTaub numbers at future null infinity: III. The Bondi massen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPhysics Department, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumPhysics Department, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/49198/2/q70720.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1088/0264-9381/14/7/022en_US
dc.identifier.sourceClassical and Quantum Gravity.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record