Show simple item record

Axonal pathfinding during the regeneration of the goldfish optic pathway

dc.contributor.authorBernhardt, Robert R.en_US
dc.identifier.citationBernhardt, Robert (1989)."Axonal pathfinding during the regeneration of the goldfish optic pathway." The Journal of Comparative Neurology 284(1): 119-134. <>en_US
dc.description.abstractRetinal ganglion cells in fish and amphibians regenerate their axons after transection of the optic nerve. Fiber tracing studies during the third month of regeneration show that the axons have reestablished a basically normal fiber order in the two brachia of the optic tract; axons originating in the ventral hemiretina are concentrated in the dorsal brachium, axons from the dorsal hemiretina in the ventral brachium. Attardi and Sperry (Exp. Neurol. 7 :46–64, 1963) first suggested that the reestablishment of the fiber order reflects path-finding by the regenerating axons. Recently, however, Becker and Cook (Development 101 :323–337, 1987) have claimed that the fiber order observed at later stages of regeneration is due to secondary axonal rearrangements and that the initial brachial choice is random. In order to evaluate whether regenerating axons are capable of navigating in the optic tract and brachia and on the tectum, the present study examined the pathway choices and the morphology of regenerating axons en route to their tectal targets in goldfish. Subsets of axons were labeled at various time intervals (2 to 30 days) following an optic nerve crush, by intraretinal application of the lipophilic fluorescent tracer 1,1-dioctadecyl-3-3-3′-3′-tetra-methylcarbocyanine (DiI). After a survival time of 18 to 72 hours (to allow for diffusion of DiI along the axons), the experimental animals were perfused with fixative and their right and left optic pathways (nerve, tract, and tectum) were dissected free and separated at the chiasm. Fluorescently labeled axons were traced in whole-mounted pathways. Pathway choices were examined at the brachial bifurcation where axons from ventral and dorsal hemiretinae normally segregate. DiI was found to label axons reliably up to their growth cones, even at the earliest stages of regrowth. The pathway choices of the axons were nonrandom. The majority of the ventral axons reached the appropriate, dorsal hemitectum through the appropriate dorsal brachium of the tract. Dorsal axons reached the ventral hemitectum mainly through the ventral brachium. This suggests the presence of specific guidance cues, accessible to the regenerating axons. Differences in the complexity of the growth cones of the regenerating axons (simple in the nerve and tectal fiber layer, complex in the tract and the synaptic layer of the tectum) provide further evidence for specific interactions between the regenerating axons and their substrates along the pathway. These result argue that regenerating retinal axons in fish are capable of axonal path-finding.en_US
dc.format.extent5070100 bytes
dc.format.extent3118 bytes
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherLife and Medical Sciencesen_US
dc.subject.otherNeuroscience, Neurology and Psychiatryen_US
dc.titleAxonal pathfinding during the regeneration of the goldfish optic pathwayen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048en_US
dc.identifier.sourceThe Journal of Comparative Neurologyen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed

Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.


If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.