Show simple item record

Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds

dc.contributor.authorMistretta, Charlotte M.en_US
dc.contributor.authorHaus, Linda F.en_US
dc.date.accessioned2007-04-06T18:23:58Z
dc.date.available2007-04-06T18:23:58Z
dc.date.issued1996-01-15en_US
dc.identifier.citationMistretta, Charlotte M.; Haus, Linda F. (1996)."Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds." The Journal of Comparative Neurology 364(3): 535-555. <http://hdl.handle.net/2027.42/50068>en_US
dc.identifier.issn0021-9967en_US
dc.identifier.issn1096-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/50068
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8820882&dopt=citationen_US
dc.description.abstractGustatory papillae are complex organs that are composed of 1) an epithelium, 2) specialized sensory cells within the epithelium (the taste buds), 3) a broad connective core, and 4) sensory innervation. During papilla development, cells in the various tissue compartments must divide, aggregate, detach, migrate, and reaggregate in relation to each other, but factors that regulate such steps are poorly understood and have not been extensively studied. All of these processes potentially require participation of the extracellular matrix. Therefore, we have studied temporal and spatial patterns of immunoreactivity for two extracellular matrix molecules, tenascin and laminin, in the developing fungiform and circumvallate papillae of fetal, perinatal, and adult sheep tongue. To determine relations of tenascin and laminin to sensory innervation, we used an antibody to growth-associated protein (GAP-43) to label growing nerves. Immunocytochemical distributions of tenascin and laminin alter during development in a manner that reflects morphogenesis rather than histologic boundaries of the taste papillae. In early fungiform papillae, tenascin immunoreactivity is very weak within the mesenchyme of the papilla core. However, there is a subsequent shift to an intense, restricted localization in the apical papilla core only—directly under taste bud-bearing regions of the papilla epithelium. In early circumvallate papillae, tenascin immunoreactivity is patchy within the papilla core and within the flanking, nongustatory papillae. Later, immunoreactivity is restricted to the perimeter of the central papilla core, under epithelium that contains developing taste buds. In fungiform and circumvallate papillae, the shift in tenascin immunolocalization is associated with periods of taste bud formation and multiplication within the papilla epithelium and with extensive branching of the sensory innervation in the papilla apex. Laminin immunoreactivity, although it is continuous throughout the basement membrane of general lingual epithelium, is interrupted in the epithelial basement membrane of early fungiform and circumvallate papillae in regions where taste buds are forming. The breaks are large in young fetuses, when taste buds first develop, and are evidenced later as punctate disruptions. Heparan sulfate proteoglycan immunoreactivity confirms that these are basement membrane discontinuities. GAP-43 label coincides with innervation of the papilla core and is most extensive in regions where tenascin immunoreactivity is weak or absent. GAP-43 immunoreactivity is also found in early taste buds: Later, it is extensive within more mature multiple taste buds, presumably in relation to synaptogenesis. We propose that tenascin has a role in promoting deadhesion of cells in the papilla epithelium during periods of taste bud formation and multiplication. Discontinuities in the epithelial basement membrane under developing taste buds, indicated with laminin and heparan sulfate proteoglycan immunoreactivity, may interact to facilitate taste bud morphogenesis and multiplication, to permit access of papilla innervation to the forming taste buds, and/or to allow epithelial/mesenchymal interactions during papilla and taste bud development. © 1996 Wiley-Liss, Inc.en_US
dc.format.extent2675079 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherLife and Medical Sciencesen_US
dc.subject.otherNeuroscience, Neurology and Psychiatryen_US
dc.titleTemporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste budsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078 ; Room 6228, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078en_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078en_US
dc.identifier.pmid8820882en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/50068/1/11_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/(SICI)1096-9861(19960115)364:3<535::AID-CNE11>3.0.CO;2-Oen_US
dc.identifier.sourceThe Journal of Comparative Neurologyen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.