Show simple item record

To the boundary and back—a numerical study

dc.contributor.authorKarni, Smadaren_US
dc.date.accessioned2007-04-06T18:38:29Z
dc.date.available2007-04-06T18:38:29Z
dc.date.issued1991-07-05en_US
dc.identifier.citationKarni, S. (1991)."To the boundary and back—a numerical study." International Journal for Numerical Methods in Fluids 13(2): 201-216. <http://hdl.handle.net/2027.42/50205>en_US
dc.identifier.issn0271-2091en_US
dc.identifier.issn1097-0363en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/50205
dc.description.abstractThis study identifies the key parameters upon which energy absorption at artificial boundaries depends. A thorough numerical study is presented, of typical reflections from open computational boundaries, for problems governed by hyperbolic systems of equations. The emphasis is on systems, where it is often the combination of all boundary procedures that determine the quality of boundary treatment. We study dissipative numerical models which have so far not been analysed to the same extent as non-dissipative models and employ a Law-Wendroff-type scheme as a prototype. While it is widely accepted that dissipative models tend to give fewer problems than non-dissipative ones, we show a variety of cases where substantial reflections do occur even in ID and quasi-ID set-ups, where theory predicts best results. This can partly be explained by the vanishing of dissipation in the far field. Group velocity analysis, justifiable on the grounds of weak dissipation, predicts a pathological behaviour which is confirmed by numerical experiments. We demonstrate strong focusing of asymptotic errors generated at the artificial boundary. Internal reflections due to slowly expanding grids are shown for non-linear systems. The need for high-frequency boundary conditions naturally arises and combined low-high-frequency boundary recipes following Higdon, Vichnevetsky and Pariser are adapted to systems and tested. Partial cures are also discussed, mainly in terms of pointing out their theoretically limited potential.en_US
dc.format.extent967755 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherEngineeringen_US
dc.subject.otherEngineering Generalen_US
dc.titleTo the boundary and back—a numerical studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/50205/1/1650130205_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/fld.1650130205en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Fluidsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.