Show simple item record

dc.contributor.authorFields, J. Bruce
dc.contributor.advisorHochester, Melvin
dc.date.accessioned2007-11-07T19:37:15Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2007-11-07T19:37:15Z
dc.date.issued2000
dc.date.submitted2000
dc.identifier.urihttps://hdl.handle.net/2027.42/57281
dc.description.abstractGiven a local ring R and n ideals whose sum is primary to the maximal ideal of R, one may define a function which takes an n-tuple of exponents to the length of the quotient of R by sum of the ideals raised to the respective exponents. This quotient can also be obtained by taking the tensor product of the quotients of R by the various powers of the ideals. This thesis studies these functions as well as the functions obtained by replacing the tensor product by a higher Tor. These functions are shown to have rational generating functions under certain conditions.en_US
dc.format.extent372234 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.subjectCommutative Algebraen_US
dc.subjectRingsen_US
dc.subjectHilbert Functionsen_US
dc.subjectHilbert-Kunz Functionsen_US
dc.subjectIntersection Multiplicitiesen_US
dc.subjectQuasipolynomial Functionsen_US
dc.subject.otherMathematicsen_US
dc.titleLength functions determined by killing powers of several ideals in a local ringen_US
dc.typeThesisen_US
dc.description.thesisdegreenamePh.D.en_US
dc.description.thesisdegreedisciplineMathematicsen_US
dc.description.thesisdegreegrantorUniversity of Michiganen_US
dc.contributor.committeememberBarvonik, Alexandre
dc.contributor.committeememberMiller, Claudia
dc.contributor.committeememberSklar, Lawrence
dc.contributor.committeememberSmith, Karen
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.identifier.uniqnamebfieldsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/57281/1/fields_thesis.pdfen_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record