Show simple item record

Hydrogen storage in metal-organic and covalent-organic frameworks by spillover

dc.contributor.authorLi, Yingweien_US
dc.contributor.authorYang, Ralph T.en_US
dc.date.accessioned2008-01-04T20:05:50Z
dc.date.available2009-01-07T20:01:17Zen_US
dc.date.issued2008-01en_US
dc.identifier.citationLi, Yingwei; Yang, Ralph T. (2008). "Hydrogen storage in metal-organic and covalent-organic frameworks by spillover." AIChE Journal 54(1): 269-279. <http://hdl.handle.net/2027.42/57505>en_US
dc.identifier.issn0001-1541en_US
dc.identifier.issn1547-5905en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/57505
dc.description.abstractCovalent-organic framework COF-1 and metal-organic frameworks HKUST-1 and MIL-101 were synthesized and studied for hydrogen storage at 77 and 298 K. Although MIL-101 had the largest surface area and pore volume among the three materials, HKUST-1 had the highest uptake (2.28 wt %) at 77 K. However, the H 2 storage capacity at 298 K and high pressure correlated with the surface area and pore volume. The H 2 storage in the COF and MOF materials assisted by hydrogen spillover, measured at 298 K up to a pressure of 10 MPa, have been examined for correlations with their structural and surface features for the first time. By using our simple technique to build carbon bridges, the hydrogen uptakes at 298 K were enhanced significantly by a factor of 2.6–3.2. The net uptake by spillover was correlated to the heat of adsorption through the Langmuir constant. Results on water vapor adsorption at 298 K indicated that COF-1 was unstable in moist air, while HKUST-1 and MIL-101 were stable. The results suggested that MIL-101 could be a promising material for hydrogen storage because of its high heat of adsorption for spiltover hydrogen, large surface area and pore volume, and stability upon H 2 O adsorption. © 2007 American Institute of Chemical Engineers AIChE J, 2008en_US
dc.format.extent547050 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChemistryen_US
dc.subject.otherChemical Engineeringen_US
dc.titleHydrogen storage in metal-organic and covalent-organic frameworks by spilloveren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 ; Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/57505/1/11362_ftp.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1002/aic.11362en_US
dc.identifier.sourceAIChE Journalen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.