Show simple item record

Architecting Energy Efficient Servers.

dc.contributor.authorKgil, Tae Hoen_US
dc.date.accessioned2008-01-16T15:05:15Z
dc.date.available2008-01-16T15:05:15Z
dc.date.issued2007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/57602
dc.description.abstractThis dissertation investigates how energy efficient servers can be architected using current and future technology. We leverage recent trends in packaging and device technology to deliver low power and high throughput. Specifically at the package level, this dissertation looks at 3D stacking technology that has emerged as a promising solution in achieving energy efficiency by delivering high throughput at a low cost. It shows how one would leverage this new technology into a datacenter. 3D stacking technology can be used to implement a simple, low-power, high-performance chip multiprocessor suitable for throughput processing. Our proposed architecture leveraging this technology, PicoServer, employs 3D technology to bond one die containing several simple slow processing cores to multiple memory dies sufficient for a primary memory. The multiple memory dies are composed of DRAM. 3D stacking technology also enables wide low-latency buses between processors and memory. These remove the need for an L2 cache allowing its area to be re-allocated to additional simple cores. The additional cores allow the clock frequency to be lowered without impairing throughput. Lower clock frequency along with the integration of non-volatile memory in turn reduces power and means that thermal constraints, a concern with 3D stacking, are easily satisfied. The PicoServer architecture targets server applications,which exhibit a high degree of thread level parallelism. An architecture targeted to efficient throughput is ideal for this application domain. At the memory device level, this dissertation investigates how the system memory could be re-architected to reduce the rising power consumption of system memory and disk drives. Flash memory has emerged as a strong candidate to reduce system memory power while remaining cost effective than conventional system memory. This dissertation discusses how Flash could be integrated at the system level and provides insights on the architectural support for Flash in servers. Our architecture uses a two level disk cache composed of a relatively small DRAM, which includes a primary disk cache, and a Flash based secondary disk cache. Further, based on our observations, we found that the Flash based disk caches should be split into a read optimized disk cache and write optimized disk cache.en_US
dc.format.extent1373 bytes
dc.format.extent4207670 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.subjectLow Poweren_US
dc.subjectServer Platformen_US
dc.subject3D Stackingen_US
dc.subjectFlash Memoryen_US
dc.subjectMemory Systemen_US
dc.subjectStorage Hierarchyen_US
dc.titleArchitecting Energy Efficient Servers.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science & Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberMudge, Trevor N.en_US
dc.contributor.committeememberMahlke, Scotten_US
dc.contributor.committeememberReinhardt, Steven K.en_US
dc.contributor.committeememberSylvester, Dennis M.en_US
dc.subject.hlbsecondlevelComputer Scienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/57602/2/tkgil_1.pdfen_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.