Show simple item record

Integrated Modeling and Hardware-in-the-Loop Study for Systematic Evaluation of Hydraulic Hybrid Propulsion Options.

dc.contributor.authorKim, Young Jaeen_US
dc.date.accessioned2008-05-08T18:59:21Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-05-08T18:59:21Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/58396
dc.description.abstractThe fuel economy benefits of any given hybrid technology depend greatly on the vehicle type, size, supervisory control and driving schedule. The main goal of this work is to develop a comprehensive methodology for up-front strategic assessments of the best hybrid system for a given vehicle platform, and to explore the impact of vehicle driving schedules on the final decision. Several other objectives enabled achieving the main goal, including modeling, optimization of design and power management of several hydraulic hybrid systems developed for a 4x4 light truck. The parallel, series and power-split hybrid configurations are modeled and analyzed. The unique issues related to matching of components and interactions in the system with a high-power density of pump/motors and the energy storage (accumulator), but relatively low energy density of the storage and limited motor speed range are investigated. The design optimization is carried out to maximize the fuel economy while satisfying vehicle performance constraints. An Engine-in-the-Loop capability is developed for each of the hybrid architectures, integration issues are resolved and the EIL is subsequently used for validation of simulation predictions and studies of the impact of hybrid system configuration and control on diesel emissions. For the power management optimization, the deterministic dynamic programming technique provides the fuel economy benchmark. Stochastic dynamic programming technique is explored next, in order to develop an implementable sub-optimal supervisory control policy based on the vehicle power demand probability distribution sampled from various driving schedules. The simulation results obtained over the wide range of driving schedules from aggressive city cycles to mild highway cycles provided fuel economy trends and comparison of hybrid propulsion options. Fuel economy improvements of ~80% (up to 150% with engine shutdowns) are shown for aggressive city-cycles, while the gains diminish for high-speed highway driving. Verification of the emission reduction potential is enabled by synergistic experiments using a newly developed engine-in-the-loop capability. The results provide insight into the effects of the hybrid power management on transient emissions of soot and nitric oxides from a diesel, and provide guidance for the development of strategies for achieving both clean and efficient hybrid propulsion.en_US
dc.format.extent8164214 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectHydraulic Hybrid, Supervisory Control, Engine-in-The-loop, Hybrid Architecture, Dynamic Programmingen_US
dc.titleIntegrated Modeling and Hardware-in-the-Loop Study for Systematic Evaluation of Hydraulic Hybrid Propulsion Options.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFilipi, Zoranen_US
dc.contributor.committeememberAssanis, Dionissios N.en_US
dc.contributor.committeememberPeng, Hueien_US
dc.contributor.committeememberSun, Jingen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/58396/1/dadnsoo_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.