Show simple item record

Reactive Polymer Coatings: A Robust Platform Towards Sophisticated Surface Engineering for Biotechnology.

dc.contributor.authorChen, Hsien-Yehen_US
dc.date.accessioned2008-05-08T19:03:21Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-05-08T19:03:21Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/58420
dc.description.abstractFunctionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of poly(ethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.en_US
dc.format.extent28905582 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectChemical Vapor Deposition (CVD)en_US
dc.subjectPolymer Thin Filmen_US
dc.subjectBiointerfaceen_US
dc.subjectSurface Modificationen_US
dc.subjectParylene Coatingen_US
dc.titleReactive Polymer Coatings: A Robust Platform Towards Sophisticated Surface Engineering for Biotechnology.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLahann, Joergen_US
dc.contributor.committeememberGulari, Erdoganen_US
dc.contributor.committeememberLarson, Ronald G.en_US
dc.contributor.committeememberTakayama, Shuichien_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/58420/1/hsienyc_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.