Show simple item record

Magma in Earth's Lower Mantle: First Principle Molecular Dynamics Simulations of Silicate Liquids.

dc.contributor.authorSun, Nien_US
dc.date.accessioned2008-05-08T19:13:37Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-05-08T19:13:37Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/58487
dc.description.abstractCaMgSi2O6 and CaSiO3 liquids have been investigated over the entire mantle pressure regime using first principles molecular dynamics simulations with density functional theory in the local density approximation and the ultra-soft plane-wave pseudopotential method. The equilibrated liquid structure is much more densely packed at high pressure. The average Si-O coordination number increases nearly linearly from 4 to 6 with compression. The results are well fitted by Mie-Grüneisen equation of state, , with a Grüneisen parameter that linearly increases and heat capacity that linearly decreases with compression. The total and self diffusion coefficients of diopside liquid exhibit an unusual pressure dependence, first decreasing with increasing pressure, than increasing, and finally decreasing again at the highest pressures. This pattern is explained by the pressure-induced decrease in the number of excess non-bridging oxygens at low pressure, and the increase in the number of 5-fold coordinated silicons at higher pressures. Mg has a slightly higher self-diffusion coefficient than Ca, both of which are slightly more diffusive than O and Si. The average activation energy over the temperature range 3000-6000 K is lower than that found experimentally at lower temperatures, consistent with non-Arrhenian behavior. We combine our results with previous results on MgSiO3 composition to determine the volume of mixing on the MgSiO3-CaSiO3 join. The volume of mixing is zero within uncertainty.en_US
dc.format.extent1355248 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectSilicate Liquidsen_US
dc.subjectFirst Principles Molecular Dynamics Simulationsen_US
dc.subjectEquation of Stateen_US
dc.subjectDiopsideen_US
dc.subjectDiffusionen_US
dc.titleMagma in Earth's Lower Mantle: First Principle Molecular Dynamics Simulations of Silicate Liquids.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineGeologyen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLange, Rebecca Annen_US
dc.contributor.committeememberStixrude, Lars P.en_US
dc.contributor.committeememberVan Der Ven, Antonen_US
dc.contributor.committeememberWalter, Lynn M.en_US
dc.contributor.committeememberZhang, Youxueen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/58487/1/nsun_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.