Show simple item record

Dynamic Walking Principles Applied to Human Gait.

dc.contributor.authorCollins, Steven H.en_US
dc.date.accessioned2008-08-25T20:50:21Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:50:21Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60646
dc.description.abstractThe subject of this thesis is the application of the dynamic walking approach to human gait. This work is motivated by the needs of persons with disabilities and by a desire to expand basic understanding of human walking. We address human gait from the perspective of dynamic walking, a theoretical approach to legged locomotion which emphasizes the use of simple dynamical models and focuses on behavior over the course of many steps rather than within a single step. We build on results from prior dynamic walking research and develop new areas of exploration, with energetics and stability providing context. We focus on three areas: improvement of prosthetic foot design, the function of arm swinging, and evaluation of balance among the elderly. These issues are addressed by use of dynamic walking models and controlled human subject experiments. We propose a Controlled Energy Storage and Return (CESR) foot prosthesis to increase push-off work and reduce energy expenditure in amputees, and tested a prototype experimentally. To better understand the role of arms swinging in gait, we developed a simple dynamic walking model with free-swinging arms and performed human subject experiments in which subjects swung their arms in various ways. Finally, we studied the effects of aging on balance during walking using a computational model and a human subject experiment in which younger and older adults walked overground for hundreds of consecutive steps. These models and experiments each expand our understanding of the fundamentals of gait and indicate pathways toward assisting individuals with disabilities. Taken as a whole, this work emphasizes the utility of the dynamic walking approach.en_US
dc.format.extent3307283 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectPassive Dynamicsen_US
dc.subjectProstheticen_US
dc.subjectControlen_US
dc.subjectBipeden_US
dc.subjectEnergy Economyen_US
dc.titleDynamic Walking Principles Applied to Human Gait.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberKuo, Arthur D.en_US
dc.contributor.committeememberGillespie, Richard Brenten_US
dc.contributor.committeememberGrosh, Karlen_US
dc.contributor.committeememberPalmieri, Riannen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60646/1/shc_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.