Show simple item record

Modular Verification and Supervisory Controller Design for Discrete-Event Systems Using Abstraction and Incremental Construction.

dc.contributor.authorHill, Richard Charlesen_US
dc.date.accessioned2008-08-25T20:51:10Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:51:10Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60669
dc.description.abstractThe subject of this dissertation is modular approaches to the verification and control of discrete-event systems (DES). DES are dynamic systems characterized by discrete states and event-driven evolution. In recent years, a substantial body of work has been built up to provide a theory and framework for the control and verification of DES. Despite all the advancements that have been made in this area, application to real-life systems has been somewhat slow. A significant hurdle to the adoption of these methods is the state-space explosion that occurs in modeling systems of the size most commonly found in industry. A common approach that has been applied to address this complexity problem is to construct a series of smaller modular supervisors, rather than a single monolithic supervisor. The problem with this approach is that the modular supervisors can often conflict with one another. This dissertation develops three new approaches to the supervisory control of DES that adopt a modular aspect to their control, while addressing the potential problem of conflict. The first approach addresses the problem of state-space explosion by offering a procedure for incrementally building modular supervisors that are guaranteed to not conflict with one another by construction. An observer type abstraction is employed to make the procedure more computationally feasible. The second approach of this dissertation constructs traditional modular supervisors, then adds another level of coordinating control to resolve conflict between the supervisors. This work employs a conflict-equivalence preserving abstraction to detect and resolve the conflict. The final approach of this dissertation employs interfaces between different components of the global system. The additional structure of these interfaces allows global properties to be verified through the achievement of local properties. Additionally, these interfaces allow for modular supervisors to be synthesized locally such that the necessary requirements are met by construction. In this work, the correctness of the three approaches is proven. Additionally, application to some manufacturing based examples are employed to illustrate the potential strengths and weaknesses of each of the approaches.en_US
dc.format.extent1270264 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectSupervisory Controlen_US
dc.subjectDiscrete Event Systemsen_US
dc.subjectLogic Controlen_US
dc.subjectModular Controlen_US
dc.subjectHierarchical Controlen_US
dc.titleModular Verification and Supervisory Controller Design for Discrete-Event Systems Using Abstraction and Incremental Construction.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLafortune, Stephaneen_US
dc.contributor.committeememberTilbury, Dawn M.en_US
dc.contributor.committeememberHu, Shixin Jacken_US
dc.contributor.committeememberLin, Fengen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60669/1/rchill_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.