Show simple item record

Microfludic Culture and Analysis of Endothelial Cells in Relation to Cardiovascular Disease and Cancer Metastasis.

dc.contributor.authorSong, Jonathan Wanserken_US
dc.date.accessioned2008-08-25T20:51:30Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:51:30Z
dc.date.issued2008en_US
dc.date.submitted2008en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60679
dc.description.abstractEndothelial cells comprise the inner lining of the entire circulatory system and are key mediators in many aspects of vascular biology. The interaction of endothelial cells with blood-borne constituents and the mechanical forces due to blood flow regulate a broad range of diseases that originate at the vasculature. The challenges of studying endothelial cell biology in vivo is that it is highly invasive to access, experimentally manipulate, and/or observe changes inside of blood vessels. Furthermore, current in vitro-based systems do not faithfully recreate the mechanical and chemical cellular environments with the proper length scales seen in physiology. Here we show examples of using the tools of microfluidics and microfabrication in developing perfusion-based in vitro systems that mimic the in vivo environments of endothelial cells. We describe a novel, reconfigurable micro-pumping and valving system that enables the delivery of a wide range of mechanical shear stress to multiple endothelial cell compartments simultaneously. We also utilized this pumping and valving system to culture endothelial cells under continuous recirculation of sub-microliter amounts of fluid. Finally, we engineered a compartmentalized endothelium to model the intravascular adhesion events of circulating cancer cells with endothelium at metastatic and non-metastatic sites. We determined that the endothelium regulates site-specific adhesion of circulating cancer cells that is independent of the predicted metastatic abilities of the cancer cells. Collectively, these results confirm that microfluidic technology can be used to properly mimic a broad range of the endothelial cell environments seen in physiology. Furthermore, we establish microfluidics as a platform for the development of systems that have the capabilities of advancing the understanding of endothelial cell biology as it relates to vascular diseases.en_US
dc.format.extent1830033 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectMicrofluidicsen_US
dc.subjectEndothelial Cellsen_US
dc.subjectMicrofabricationen_US
dc.subjectCardiovascular Diseaseen_US
dc.subjectCancer Metastasisen_US
dc.titleMicrofludic Culture and Analysis of Endothelial Cells in Relation to Cardiovascular Disease and Cancer Metastasis.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberTakayama, Shuichien_US
dc.contributor.committeememberBull, Joseph L.en_US
dc.contributor.committeememberLuker, Gary D.en_US
dc.contributor.committeememberMayer, Michaelen_US
dc.contributor.committeememberNor, Jacquesen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60679/1/songjon_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.