Show simple item record

Accelerated Statistical Image Reconstruction Algorithms and Simplified Cost Functions for X-ray Computed Tomography.

dc.contributor.authorSrivastava, Someshen_US
dc.date.accessioned2008-08-25T20:53:49Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:53:49Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60749
dc.description.abstractStatistical image reconstruction methods are poised to replace traditional methods like filtered back-projection (FBP) in commercial X-ray computed tomography (CT) scanners. Statistical methods offer many advantages over FBP, including incorporating physical effects and physical constraints, modeling of complex imaging geometries, and imaging at lower X-ray doses. But, the use of statistical methods is limited due to many practical problems. This thesis proposes methods to improve four aspects of statistical methods: reconstruction time, beam hardening, non-negativity constraints, and organ motion. To reduce the reconstruction time, several novel iterative algorithms are proposed that are adapted to multi-core computing, including a hybrid ordered subsets (OS) / iterative coordinate descent (ICD) approach. This approach leads to a reduction in reconstruction time, and it also makes the ICD algorithm robust to the initial guess image. Statistical methods have accounted for beam hardening by using more information than needed by traditional FBP-based methods like the Joseph-Spital (JS) method. This thesis proposes a statistical method that uses exactly the same beam hardening information as the JS method while suppressing beam hardening artifacts. Directly imposing the non-negativity constraints can increase the computation time of algorithms such as the preconditioned conjugate gradient (PCG) method. This thesis proposes a modification of the penalized-likelihood cost function for monoenergetic transmission tomography, and a corresponding PCG algorithm, that reduce reconstruction time when enforcing nonnegativity. Organ motion during a scan causes image artifacts, and in some cases these artifacts are more apparent when standard statistical methods are used. A preliminary simulation study of a new approach to remove motion artifacts is presented. The distinguishing feature of this approach is that it does not require any new information from the scanner. The target applications of this research effort are 3-D volume reconstructions for axial cone-beam and helical cone-beam scanning geometries of multislice CT (MSCT) scanners.en_US
dc.format.extent17962378 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectX-ray Computer Tomographyen_US
dc.titleAccelerated Statistical Image Reconstruction Algorithms and Simplified Cost Functions for X-ray Computed Tomography.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFessler, Jeffrey A.en_US
dc.contributor.committeememberGoodsitt, Mitchell M.en_US
dc.contributor.committeememberHero Iii, Alfred O.en_US
dc.contributor.committeememberNeuhoff, David L.en_US
dc.contributor.committeememberSaigal, Romeshen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60749/1/someshs_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.