Show simple item record

Advances in Concurrent Motion and Field-Inhomogeneity Correction in Functional MRI.

dc.contributor.authorYeo, Teck Beng Desmonden_US
dc.date.accessioned2008-08-25T20:55:05Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2008-08-25T20:55:05Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/60787
dc.description.abstractHead motion and static magnetic field (B0) inhomogeneity are two important sources of image intensity variability in functional MRI (fMRI). Ideally, in MRI, any deviation in B0 homogeneity in an object occurs only by design. However, due to imperfections in the main magnet and gradient coils, and, magnetic susceptibility differences in the object, undesired B0 deviations may occur. This causes geometric distortion in Cartesian EPI images. In addition to spatial shifts and rotations of images, head motion during an fMRI experiment may induce time-varying field-inhomogeneity changes in the brain. As a result, correcting for motion and field-inhomogeneity effects independently of each other with a static field map may be insufficient, especially in the presence of large out-of-plane rotations. Our primary concern is the correction of the combined effects of motion and field-inhomogeneity induced geometric distortion in Cartesian EPI fMRI images. We formulate a concurrent field-inhomogeneity with map-slice-to-volume motion correction, and develop a motion-robust dual-echo bipolar gradient echo static field map estimation method. We also propose and evaluate a penalized weighted least squares approach to dynamic field map estimation using the susceptibility voxel convolution method. This technique accounts for field changes due to out-of-plane rotations, and estimates dynamic field maps from a high resolution static field map without requiring accurate image segmentation, or the use of literature susceptibility values. Experiments with simulated data suggest that the technique is promising, and the method will be applied to real data in future work. In a separate clinical fMRI project, which is independent of the above work, we also formulate a current density weighted index to quantify correspondence between electrocortical stimulation and fMRI maps for brain presurgical planning. The proposed index is formulated with the broader goal of defining safe limits for lesion resection, and is characterized extensively with simulated data. The index is also computed for real human datasets.en_US
dc.format.extent4859316 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectFMRIen_US
dc.subjectFunctional MRIen_US
dc.subjectMotion Correctionen_US
dc.subjectField Inhomogeneityen_US
dc.subjectMagnetic Susceptibilityen_US
dc.subjectElectro-cortical Stimulationen_US
dc.titleAdvances in Concurrent Motion and Field-Inhomogeneity Correction in Functional MRI.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFessler, Jeffrey A.en_US
dc.contributor.committeememberKim, Boklyeen_US
dc.contributor.committeememberChenevert, Thomas L.en_US
dc.contributor.committeememberMeyer, Charles R.en_US
dc.contributor.committeememberScott, Clayton D.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/60787/1/tbyeo_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.